Open Access
CC BY 4.0 · Sustainability & Circularity NOW 2026; 03: a27738077
DOI: 10.1055/a-2773-8077
Original Article

Visible Light-Induced Aerobic Amine Oxidation to Imine in Aqueous Salt Solutions: Saline and Sustainable

Authors

  • Varsha S. Kare

    1   Department of Chemistry, Institute of Chemical Technology, Mumbai, India (Ringgold ID: RIN80493)
  • Yash Patil

    1   Department of Chemistry, Institute of Chemical Technology, Mumbai, India (Ringgold ID: RIN80493)
  • Shraeddha S. Tiwari

    1   Department of Chemistry, Institute of Chemical Technology, Mumbai, India (Ringgold ID: RIN80493)

VK acknowledges MAHAJYOTI for research fellowship (Mahatma Jyotiba Phule Research Fellowship-2022 (MAHAJYOTI/2022/ Ph.D. Fellow/1002)). The authors acknowledge the financial support from DST-FIST for NMR facility, Department of Chemistry, ICT, Mumbai, having project No. SR/FST/CS-I/2023/291 dated 22/02/2024.
Supported by: DST INDIA DST FIST SR/FST/CS-I/2023/291


Graphical Abstract

Abstract

The selective photooxidation of C–N bond in amines is a process of prime importance but remains challenging. Herein, we report the application of aqueous salt solutions as reaction media for the selective synthesis of imine from benzylamine. Oxidation of benzylamine as the representative amine using aqueous salt solutions as reaction media resulted in much higher conversion (~99%) as compared to that obtained in conventionally used solvents such as acetonitrile. Control experiments indicate that the reaction outcome is relatively unaffected by the type of ions used – indicating limited contribution from ion-specific pathways and implicating synergistic contributions of various species at the catalytic interface. Gram-scale synthesis and reusability of the reaction system for at least five reaction cycles indicates good catalyst stability. This is the first report using aqueous salt solutions for oxidation of benzylamine using cooperative TiO2–TEMPO photocatalyst. The approach has the potential to be extended to other photocatalytic oxidations with promising results.



Publication History

Received: 03 November 2025

Accepted after revision: 16 December 2025

Accepted Manuscript online:
16 December 2025

Article published online:
13 January 2026

© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Varsha S. Kare, Yash Patil, Shraeddha S. Tiwari. Visible Light-Induced Aerobic Amine Oxidation to Imine in Aqueous Salt Solutions: Saline and Sustainable. Sustainability & Circularity NOW 2026; 03: a27738077.
DOI: 10.1055/a-2773-8077
 
  • References

  • 1 Lang X, Ji H, Chen C, Ma W, Zhao J. Angew Chem Int Ed 2011; 50: 3934
  • 2 Japa M, Tantraviwat D, Phasayavan W, Nattestad A, Chen J, Inceesungvorn B. Colloids Surf A Physicochem Eng Asp 2021; 610: 125743
  • 3 Wang F, He X, Sun L. et al. J Mater Chem A Mater 2018; 6: 2091
  • 4 Lang X, Ma W, Zhao Y, Chen C, Ji H, Zhao J. Chem Eur J 2012; 18: 2624
  • 5 Xu H, Shi J-L, Hao H, Li X, Lang X. Catal Today 2019; 335: 128
  • 6 Hao H, Shi J-L, Xu H, Li X, Lang X. Appl Catal B 2019; 246: 149
  • 7 Li X, Xu H, Shi J-L, Hao H, Yuan H, Lang X. Appl Catal B 2019; 244: 758
  • 8 Lang X, Zhao J. Chem Asian J 2018; 13: 599
  • 9 Shi J-L, Hao H, Li X, Lang X. Cat Sci Technol 2018; 8: 3910
  • 10 Li X, Lang X. J Chem Phys 2020; 152: 044705
  • 11 Zhou J, Ma X, Wang Y, Li X, Lang X. Sustainable Energy Fuels 2022; 6: 894
  • 12 Li N, Lang X, Ma W, Ji H, Chen C, Zhao J. Chem Commun 2013; 49: 5034
  • 13 Zhao W, Yang C, Zhang X. et al. ChemSusChem 2020; 13: 116
  • 14 Swaminathan S, Rao VG, Bera JK, Chandra M. Angew Chem Int Ed 2021; 60: 12532
  • 15 Hazra S, Malik E, Nair A, Tiwari V, Dolui P, Elias AJ. Chem Asian J 2020; 15: 1916
  • 16 Gawande MB, Bonifácio VDB, Luque R, Branco PS, Varma RS. Chem Soc Rev 2013; 42: 5522
  • 17 Cortes-Clerget M, Yu J, Kincaid JRA, Walde P, Gallou F, Lipshutz BH. Chem Sci 2021; 12: 4237
  • 18 Harry NA, Radhika S, Neetha M, Anilkumar G. ChemistrySelect 2019; 4: 12337
  • 19 Kare V, Tiwari S. Sustainability Circ NOW 2025; 2: a25056356
  • 20 Wang X, Wang Y, Li H. Asian J Org Chem 2023; 12: e202300475
  • 21 Pedraza E, de la Cruz C, Mavrandonakis A. et al. Adv Energy Mater 2023; 13: 2301929
  • 22 Hazra S, Kushawaha AK, Yadav D, Dolui P, Deb M, Elias AJ. Green Chem 2019; 21: 1929
  • 23 Kushawaha AK, Jaiswal AK, Pandey S, Sashidhara KV. Tetrahedron 2021; 101: 132502
  • 24 Hazra S, Tiwari V, Verma A, Dolui P, Elias AJ. Org Lett 2020; 22: 5496
  • 25 Gao J, Meng Y, Benton A. et al. Mater Interfaces 2020; 12: 38012
  • 26 Ito T, Seidel FW, Jin X, Nozaki K. J Org Chem 2022; 87: 12733
  • 27 Parrino F, Livraghi S, Giamello E, Ceccato R, Palmisano L. ACS Catal 2020; 10: 7922
  • 28 Hosseinpour S, Tang F, Wang F. et al. J Phys Chem Lett 2017; 8: 2195
  • 29 Selloni A. Ann Rev Phys Chem 2024; 75: 47
  • 30 Peper JL, Gentry NE, Boudy B, Mayer JM. Inorg Chem 2021; 61: 767