Open Access
CC BY 4.0 · Sustainability & Circularity NOW 2026; 03: a27682102
DOI: 10.1055/a-2768-2102
Original Article

Green and Sustainable Syntheses of Quinoxaline Derivatives via Nicotinamide Catalysis in Water

Authors

  • Sandip J. Detke

    1   Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India (Ringgold ID: RIN683322)
  • Omkar C. Harasure

    1   Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India (Ringgold ID: RIN683322)
  • Sai Srinivas Ponugoti

    1   Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India (Ringgold ID: RIN683322)
  • Shreerang V. Joshi

    1   Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India (Ringgold ID: RIN683322)
  • Prashant S. Kharkar

    1   Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India (Ringgold ID: RIN683322)


Graphical Abstract

Abstract

The synthesis of medicinally significant quinoxaline derivatives, utilizing quinoxaline as a heterocyclic scaffold, was efficiently achieved with catalytic amounts of nicotinamide, one of the B-vitamins and a cost-effective, nontoxic, and readily available catalyst, in water, yielding excellent results with merely 10 mol% catalyst loading. A systematic examination of the reaction parameters, including solvent and catalyst loading, was conducted to optimize the yield. Various aromatic and aliphatic 1,2-diketones and 1,2-diamines, such as substituted phenylenediamines and heterocyclic diamines, were subjected to nicotinamide-catalyzed condensation, producing 20 quinoxaline derivatives in high yields (85–96%). The reaction products were characterized by 1H and 13C NMR, FT-IR, and mass spectral analyses. This green and sustainable method, utilizing water as a solvent, highlights quinoxaline’s potential as a valuable scaffold in the medicinal chemistry of small-molecule drugs for diverse therapeutic applications.



Publication History

Received: 22 August 2025

Accepted after revision: 08 December 2025

Accepted Manuscript online:
09 December 2025

Article published online:
13 February 2026

© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Sandip J. Detke, Omkar C. Harasure, Sai Srinivas Ponugoti, Shreerang V. Joshi, Prashant S. Kharkar. Green and Sustainable Syntheses of Quinoxaline Derivatives via Nicotinamide Catalysis in Water. Sustainability & Circularity NOW 2026; 03: a27682102.
DOI: 10.1055/a-2768-2102
 
  • References

  • 1 Suthar SK, Chundawat NS, Singh GP, Padrón JM, Jhala YK. Eur J Med Chem Rep 2022; 1 (05) 100040
  • 2 Pereira JA, Pessoa AM, Cordeiro MN. et al. Eur J Med Chem 2015; 5 (97) 664-672
  • 3 Tariq S, Somakala K, Amir M. Eur J Med Chem 2018; 1 (143) 542-557
  • 4 Kaushal T, Srivastava G, Sharma A, Negi AS. Bioorg Med Chem 2019; 27 (01) 16-35
  • 5 Bayoumi AH, Ghiaty AH, Abd El-Gilil SM, Husseiny EM, Ebrahim MA. J Heterocyclic Chem 2019; 56 (12) 3215-3235
  • 6 González M, Cerecetto H. Expert Opin Ther Pat 2012; 22 (11) 1289-1302
  • 7 Schofield K. Hetero-Aromatic Nitrogen Compounds: Pyrroles and Pyridines. Springer; 2013: 18
  • 8 Katritzky AR, Lagowski JM. The Principles of Heterocyclic Chemistry. Elsevier; 2013: 22
  • 9 Makhova NN, Belen’kii LI, Gazieva GA. et al. Russ Chem Rev 2020; 89 (01) 55
  • 10 Lõkov M, Tshepelevitsh S, Heering A, Plieger PG, Vianello R, Leito I. Eur J Org Chem 2017; 2017 (30) 4475-4489
  • 11 Tristan-Manzano M, Guirado A, Martínez-Esparza M. et al. Curr Med Chem 2015; 22 (26) 3075-3108
  • 12 Kumar A, Dhameliya TM, Sharma K, Patel KA, Hirani RV, Bhatt AJ. J Mol Struct 2022; 5 (1259) 132732
  • 13 Carta A, Corona P, Loriga M. Curr Med Chem 2005; 12 (19) 2259-2272
  • 14 Matada BS, Pattanashettar R, Yernale NG. Bioorg Med Chem 2021; 15 (32) 115973
  • 15 Phongphane L, Azmi MN. Mini-Rev Org Chem 2023; 20 (04) 415-435
  • 16 Khatoon H, Abdulmalek E. Molecules 2021; 26 (04) 1055
  • 17 Bhandari DR, Khengar UJ, Vekariya RH, Gajjar JA. Synth Commun 2024; 25: 1-26
  • 18 Gedefaw D, Prosa M, Bolognesi M, Seri M, Andersson MR. Adv Energy Mater 2017; 7 (21) 1700575
  • 19 Ameta SC, Ameta R. Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology. Academic press; 2018: 19
  • 20 Robinson RS, Taylor RJ. Synlett 2005; 2005 (06) 1003-1005
  • 21 Raw SA, Wilfred CD, Taylor RJ. Chem Commun 2003; 18: 2286-2287
  • 22 Thombre PB, Korde SA, Dipake SS, Rajbhoj AS, Lande MK, Gaikwad ST. Synth Commun 2023; 53 (19) 1623-1636
  • 23 Soleymani R, Niakan N, Tayeb S, Hakimi S. Orient J Chem 2012; 28 (02) 687
  • 24 Sharma RK, Sharma C. Catal Commun 2011; 12 (05) 327-331
  • 25 Sadjadi S, Sadjadi S, Hekmatshoar R. Ultrason Sonochem 2010; 17 (05) 764-767
  • 26 More SV, Sastry MN, Yao CF. Green Chem 2006; 8 (01) 91-95
  • 27 Cai JJ, Zou JP, Pan XQ, Zhang W. Tetrahedron Lett 2008; 49 (52) 7386-7390
  • 28 Huang TK, Wang R, Shi L, Lu XX. Catal Commun 2008; 9 (06) 1143-1147
  • 29 Dong F, Kai G, Zhenghao F, Xinli Z, Zuliang L. Catal Commun 2008; 9 (02) 317-320
  • 30 Mirjalili BB, Akbari A. Chin Chem Lett 2011; 22 (06) 753-756
  • 31 Krishnakumar B, Swaminathan M. Bull Chem Soc Jpn 2011; 84 (11) 1261-1266
  • 32 Darabi HR, Mohandessi S, Aghapoor K, Mohsenzadeh F. Catal Commun 2007; 8 (03) 389-392
  • 33 Niknam K, Saberi D, Mohagheghnejad M. Molecules 2009; 14 (05) 1915-1926
  • 34 Rao KV, Prasad PS, Lingaiah N. J Mol Catal A Chem 2009; 312 (1/2) 65-69
  • 35 Kokel A, Schäfer C, Török B. Curr Org Synth 2019; 16 (04) 615-649
  • 36 Török B. Green Chemistry. Elsevier; 2018: 49-89
  • 37 Kumar B, Debut A. eds. Green Chemistry: New Perspectives. BoD–Books on Demand; 2022: 14
  • 38 Hamidinasab M, Ahadi N, Bodaghifard MA, Brahmachari G. Polycycl Aromat Compd 2023; 43 (06) 5172-5226
  • 39 Bohre A, Modak A, Chourasia V, Jadhao PR, Sharma K, Pant KK. Chem Eng J 2022; 15 (450) 138032
  • 40 Albini A, Protti S. Paradigms in Green Chemistry and Technology. Heidelberg: Springer; 2016
  • 41 Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P. Electron J Biotechnol 2017; 1 (26) 69-83
  • 42 Ashokkumar V, Flora G, Venkatkarthick R. et al. Fuel 2022; 15 (324) 124313
  • 43 Su F, Guo Y. Green Chem 2014; 16 (06) 2934-2957
  • 44 Hoang AT, Nizetic S, Ong HC, Chong CT, Atabani AE. J Environ Manag 2021; 15 (296) 113194
  • 45 Patel A, Shah D, Patel N. et al. Curr Org Chem 2021; 25 (24) 3004-3016
  • 46 Abdelaziz AA, Moustafa A, Ibrahim Y, Ryad N. J Pharm Sci Drug Manuf-Misr Univ Sci Technol 2025; 2 (02) 13-25
  • 47 Malik J, Khatkar A, Nanda A. Curr Drug Targets 2023; 24 (02) 157-170
  • 48 Detke SJ, Karwande AD, Ponugoti SS, Joshi SV, Kharkar PS. Synth Commun 2024; 54 (23) 2024-2037