Subscribe to RSS
DOI: 10.1055/a-2761-5903
Digital Twins for Predictive Modelling of Thrombosis and Stroke Risk: Current Approaches and Future Directions
A TH Scientific StatementAuthors

Abstract
Thrombosis drives substantial global mortality across atrial fibrillation, venous thromboembolism, and atherosclerosis. However, clinical scores treat risk as a static variable and omit evolving comorbidities, functional biomarkers, anatomy, and treatment exposure, leading to misclassification and preventable events. This statement advances a unified scientific agenda for patient-specific digital twins that dynamically integrate multimodal longitudinal data with mechanistic insight to predict thrombogenesis risks. We position these digital twins as hybrid models anchored in physics and data-driven algorithms that can simulate disease progression and therapy. The goal of this approach is to refine stroke and bleeding estimation beyond current clinical rules. Continuous updating from imaging data, laboratory test results, wearables, and electronic health records supports dynamic risk trajectories and adaptive care pathways, facilitating continuous risk reassessment. This statement analyzes gaps in data quality, calibration, validation, and uncertainty quantification that presently limit the clinical translation of this technology. Research priorities are then proposed for multiscale thrombosis modelling, physics-informed learning, probabilistic forecasting, and regulatory-compliant data stewardship. Finally, we outline translation to in silico trials, regulatory alignment, and hospital workflows that link predictions to decisions. By articulating shared challenges across thrombosis-driven diseases and reframing risk as a time-varying measurable quantity, this statement lays a foundation for developing digital twin approaches that support a shift from population heuristics towards precise, timely thrombosis care. These advances are essential for translating digital twin technology from research to clinical practice, enabling dynamic risk prediction and personalized anticoagulation therapy.
Keywords
digital twins - computational modelling - computational fluid dynamics - thrombus - thrombosis - venous thromboembolism - deep vein thrombosis - stroke - atrial fibrillation - clinical risk predictionPublication History
Received: 12 August 2025
Accepted after revision: 02 December 2025
Article published online:
09 February 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Wendelboe AM, Raskob GE. Global burden of thrombosis: epidemiologic aspects. Circ Res 2016; 118 (09) 1340-1347
- 2 Lip GYH, Nieuwlaat R, Pisters R, Lane DA, Crijns HJGM. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on atrial fibrillation. Chest 2010; 137 (02) 263-272
- 3 Teppo K, Lip GYH, Airaksinen KEJ. et al. Comparing CHA2DS2-VA and CHA2DS2-VASc scores for stroke risk stratification in patients with atrial fibrillation: a temporal trends analysis from the retrospective Finnish AntiCoagulation in Atrial Fibrillation (FinACAF) cohort. Lancet Reg Health Eur 2024; 43: 100967
- 4 Le Gal G, Righini M, Roy PM. et al. Prediction of pulmonary embolism in the emergency department: the revised Geneva score. Ann Intern Med 2006; 144 (03) 165-171
- 5 Chang TY, Lip GYH, Chen SA, Chao TF. Importance of risk reassessment in patients with atrial fibrillation in guidelines: assessing risk as a dynamic process. Can J Cardiol 2019; 35 (05) 611-618
- 6 van den Ham HA, Klungel OH, Singer DE, Leufkens HGM, van Staa TP. Comparative performance of ATRIA, CHADS2, and CHA2DS2-VASc risk scores predicting stroke in patients with atrial fibrillation: results from a national primary care database. J Am Coll Cardiol 2015; 66 (17) 1851-1859
- 7 Corral-Acero J, Margara F, Marciniak M. et al. The “digital twin” to enable the vision of precision cardiology. Eur Heart J 2020; 41 (48) 4556-4564
- 8 Ortega-Martorell S, Olier I, Ohlsson M, Lip GYH. TARGET Consortium. Advancing personalised care in atrial fibrillation and stroke: the potential impact of AI from prevention to rehabilitation. Trends Cardiovasc Med 2025; 35 (04) 205-211
- 9 Ortega-Martorell S, Olier I, Ohlsson M, Lip GYH. TARGET Consortium. TARGET: a major European project aiming to advance the personalised management of atrial fibrillation-related stroke via the development of health virtual twins technology and artificial intelligence. Thromb Haemost 2025; 125 (01) 7-11
- 10 Bellfield RAA, Olier I, Lotto R. et al. AI-based derivation of atrial fibrillation phenotypes in the general and critical care populations. EBioMedicine 2024; 107: 105280
- 11 Qureshi A, Lip GYH, Nordsletten DA, Williams SE, Aslanidi O, de Vecchi A. Imaging and biophysical modelling of thrombogenic mechanisms in atrial fibrillation and stroke. Front Cardiovasc Med 2023; 9: 1074562
- 12 Krittayaphong R, Chichareon P, Methavigul K, Treewaree S, Lip GYH. Relation of changes in ABC pathway compliance status to clinical outcomes in patients with atrial fibrillation: a report from the COOL-AF registry. Eur Heart J Qual Care Clin Outcomes 2025; 11 (03) 239-248
- 13 Zhang J, Luo L, Chen G. et al. Associations of ambient air pollution with incidence and dynamic progression of atrial fibrillation. Sci Total Environ 2024; 951: 175710
- 14 Kurasz A, Lip GYH, Święczkowski M, Tomaszuk-Kazberuk A, Dobrzycki S, Kuźma Ł. Air quality and the risk of acute atrial fibrillation (EP-PARTICLES study): a nationwide study in Poland. Eur J Prev Cardiol 2025; zwaf016
- 15 Święczkowski M, Lip GYH, Kurasz A. et al. Association between exposure to air pollution and increased ischaemic stroke incidence: a retrospective population-based cohort study (EP-PARTICLES study). Eur J Prev Cardiol 2025; 32 (04) 276-287
- 16 Kim MH, Yang PS, Kim D. et al. Racial differences and similarities in atrial fibrillation epidemiology and risk factors in UK Biobank and Korean NHIS-HEALS cohort studies. Heart Rhythm 2025; 22 (08) e277-e284
- 17 Kang DS, Yang PS, Kim D. et al. Racial differences in bleeding risk: an ecological epidemiological study comparing Korea and United Kingdom subjects. Thromb Haemost 2024; 124 (09) 842-851
- 18 Kang DS, Yang PS, Kim D. et al. Racial differences in ischemic and hemorrhagic stroke: an ecological epidemiological study. Thromb Haemost 2024; 124 (09) 883-892
- 19 Serna MJ, Rivera-Caravaca JM, López-Gálvez R. et al. Dynamic assessment of CHA2DS2-VASc and HAS-BLED scores for predicting ischemic stroke and major bleeding in atrial fibrillation patients. Rev Esp Cardiol (Engl Ed) 2024; 77 (10) 835-842
- 20 Soler-Espejo E, Zazo-Luengo BÁ, Rivera-Caravaca JM. et al. Poor clinical outcomes associated to multimorbidity, frailty and malnutrition in patients with atrial fibrillation. J Nutr Health Aging 2025; 29 (01) 100430
- 21 Krittayaphong R, Winijkul A, Methavigul K, Chichareon P, Lip GYH. Clinical outcomes of patients with atrial fibrillation in relation to multimorbidity status changes over time and the impact of ABC pathway compliance: a nationwide cohort study. J Thromb Thrombolysis 2025; 58 (01) 97-108
- 22 Chao TF, Chan YH, Chiang CE. et al. Stroke prevention with direct oral anticoagulants in high-risk elderly atrial fibrillation patients at increased bleeding risk. Eur Heart J Qual Care Clin Outcomes 2022; 8 (07) 730-738
- 23 Chao TF, Liu CJ, Lin YJ. et al. Oral anticoagulation in very elderly patients with atrial fibrillation: a nationwide cohort study. Circulation 2018; 138 (01) 37-47
- 24 Liu Y, Chen Y, Olier I. et al; GLORIA-AF Investigators. Residual risk prediction in anticoagulated patients with atrial fibrillation using machine learning: a report from the GLORIA-AF registry phase II/III. Eur J Clin Invest 2025; 55 (03) e14371
- 25 McCabe JJ, Cheung Y, Foley M. et al. Residual risk of recurrent stroke despite anticoagulation in patients with atrial fibrillation: a systematic review and meta-analysis. JAMA Neurol 2025; 82 (07) 696-705
- 26 Lip GYH. The ABC pathway: an integrated approach to improve AF management. Nat Rev Cardiol 2017; 14 (11) 627-628
- 27 Chu M, Zhang S, Gong J. et al; MIRACLE-AF Investigators. Telemedicine-based integrated management of atrial fibrillation in village clinics: a cluster randomized trial. Nat Med 2025; 31 (04) 1276-1285
- 28 Guo Y, Lane DA, Wang L. et al; mAF-App II Trial Investigators. Mobile health technology to improve care for patients with atrial fibrillation. J Am Coll Cardiol 2020; 75 (13) 1523-1534
- 29 Romiti GF, Guo Y, Corica B, Proietti M, Zhang H, Lip GYH. mAF-App II trial investigators. Mobile health-technology-integrated care for atrial fibrillation: a win ratio analysis from the mAFA-II randomized clinical trial. Thromb Haemost 2023; 123 (11) 1042-1048
- 30 Treewaree S, Lip GYH, Krittayaphong R. Non-vitamin K antagonist oral anticoagulant, warfarin, and ABC pathway adherence on hierarchical outcomes: win ratio analysis of the COOL-AF registry. Thromb Haemost 2024; 124 (01) 69-79
- 31 Romiti GF, Pastori D, Rivera-Caravaca JM. et al. Adherence to the “Atrial fibrillation Better Care” pathway in patients with atrial fibrillation: impact on clinical outcomes—a systematic review and meta-analysis of 285,000 patients. Thromb Haemost 2022; 122 (03) 406-414
- 32 Krittayaphong R, Treewaree S, Yindeengam A, Komoltri C, Lip GYH. Latent class analysis for the identification of phenotypes associated with increased risk in atrial fibrillation patients: the COOL-AF registry. Thromb Haemost 2025; . Epub ahead of print
- 33 Chao TF, Joung B, Takahashi Y. et al. 2021 focused update consensus guidelines of the Asia Pacific Heart Rhythm Society on stroke prevention in atrial fibrillation: executive summary. Thromb Haemost 2022; 122 (01) 20-47
- 34 Wang Y, Guo Y, Qin M. et al; Expert Reviewers. 2024 Chinese expert consensus guidelines on the diagnosis and treatment of atrial fibrillation in the elderly, endorsed by Geriatric Society of Chinese Medical Association (Cardiovascular Group) and Chinese Society of Geriatric Health Medicine (Cardiovascular Branch): executive summary. Thromb Haemost 2024; 124 (10) 897-911
- 35 Joglar JA, Chung MK, Armbruster AL. et al. 2023 ACC/AHA/ACCP/HRS Guideline for the diagnosis and management of atrial fibrillation: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024; 149 (01) e1-e156
- 36 Van Gelder IC, Rienstra M, Bunting KV. et al; ESC Scientific Document Group. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2024; 45 (36) 3314-3414
- 37 Sun Y, Ling Y, Chen Z. et al. Finding low CHA2DS2-VASc scores unreliable? Why not give morphological and hemodynamic methods a try?. Front Cardiovasc Med 2023; 9: 1032736
- 38 Sel K, Osman D, Zare F. et al. Building digital twins for cardiovascular health: from principles to clinical impact. J Am Heart Assoc 2024; 13 (19) e031981
- 39 Luraghi G, Rodriguez Matas JF, Dubini G. et al; INSIST investigators. Applicability assessment of a stent-retriever thrombectomy finite-element model. Interface Focus 2021; 11 (01) 20190123
- 40 Hoekstra AG, Marquering H. on behalf of the GEMINI consortium. Towards a generation of digital twins in healthcare of ischaemic and haemorrhagic stroke. In: Franco L, de Mulatier C, Paszynski M, Krzhizhanovskaya VV, Dongarra JJ, Sloot PMA. eds. Computational Science – ICCS 2024. ICCS 2024. (Lecture Notes in Computer Science; vol 14834). Springer, Cham; 2024: 239-245
- 41 Albors C, Mill J, Olivares AL, Iriart X, Cochet H, Camara O. Impact of occluder device configurations in in-silico left atrial hemodynamics for the analysis of device-related thrombus. PLOS Comput Biol 2024; 20 (09) e1011546
- 42 Guerrero-Hurtado M, Garcia-Villalba M, Gonzalo A. et al. Haemodynamics affects factor XI/XII anticoagulation efficacy in patient-specific left atrial models. Preprint posted online August 28, 2024
- 43 Aguado AM, Olivares AL, Yagüe C. et al. In silico optimization of left atrial appendage occluder implantation using interactive and modeling tools. Front Physiol 2019; 10: 237
- 44 García-Villalba M, Rossini L, Gonzalo A. et al. Demonstration of patient-specific simulations to assess left atrial appendage thrombogenesis risk. Front Physiol 2021; 12: 596596
- 45 Zhang LT, Gay M. Characterizing left atrial appendage functions in sinus rhythm and atrial fibrillation using computational models. J Biomech 2008; 41 (11) 2515-2523
- 46 Koizumi R, Funamoto K, Hayase T. et al. Numerical analysis of hemodynamic changes in the left atrium due to atrial fibrillation. J Biomech 2015; 48 (03) 472-478
- 47 Al-Saady NM, Obel OA, Camm AJ. Left atrial appendage: structure, function, and role in thromboembolism. Heart 1999; 82 (05) 547-554
- 48 García-Isla G, Olivares AL, Silva E. et al. Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage. Int J Numer Methods Biomed Eng 2018; 34 (08) e3100
- 49 Bosi GM, Cook A, Rai R. et al. Computational fluid dynamic analysis of the left atrial appendage to predict thrombosis risk. Front Cardiovasc Med 2018; 5: 34
- 50 Feng L, Gao H, Griffith B, Niederer S, Luo X. Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve. Int J Numer Methods Biomed Eng 2019; 35 (11) e3254
- 51 Masci A, Barone L, Dedè L. et al. The impact of left atrium appendage morphology on stroke risk assessment in atrial fibrillation: a computational fluid dynamics study. Front Physiol 2019; 9: 1938
- 52 Sanatkhani S, Nedios S, Menon PG, Bollmann A, Hindricks G, Shroff SG. Subject-specific calculation of left atrial appendage blood-borne particle residence time distribution in atrial fibrillation. Front Physiol 2021; 12: 633135
- 53 Bäck S, Skoda I, Lantz J. et al. Elevated atrial blood stasis in paroxysmal atrial fibrillation during sinus rhythm: a patient-specific computational fluid dynamics study. Front Cardiovasc Med 2023; 10: 1219021
- 54 Telle Å, Kassar A, Chamoun N. et al. Systematic computational assessment of atrial function impairment due to fibrotic remodelling in electromechanical properties. Preprint posted online June 27, 2025
- 55 Viola F, Meschini V, Verzicco R. Fluid–structure-electrophysiology interaction (FSEI) in the left-heart: a multi-way coupled computational model. Eur J Mech B Fluids 2020; 79: 212-232
- 56 Bucelli M, Zingaro A, Africa PC, Fumagalli I, Dede' L, Quarteroni A. A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: application to the human left heart. Int J Numer Methods Biomed Eng 2023; 39 (03) e3678
- 57 Gonzalo A, Augustin CM, Bifulco SF. et al. Multi-physics simulations reveal haemodynamic impacts of patient-derived fibrosis-related changes in left atrial tissue mechanics. bioRxiv. Published online October 17, 2024
- 58 Di Biase L, Santangeli P, Anselmino M. et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J Am Coll Cardiol 2012; 60 (06) 531-538
- 59 Yamamoto M, Seo Y, Kawamatsu N. et al. Complex left atrial appendage morphology and left atrial appendage thrombus formation in patients with atrial fibrillation. Circ Cardiovasc Imaging 2014; 7 (02) 337-343
- 60 Yaghi S, Chang AD, Akiki R. et al. The left atrial appendage morphology is associated with embolic stroke subtypes using a simple classification system: a proof of concept study. J Cardiovasc Comput Tomogr 2020; 14 (01) 27-33
- 61 Dueñas-Pamplona J, García JG, Castro F, Muñoz-Paniagua J, Goicolea J, Sierra-Pallares J. Morphing the left atrium geometry: a deeper insight into blood stasis within the left atrial appendage. Appl Math Model 2022; 108 (10) 27-45
- 62 Musotto G, Monteleone A, Vella D. et al. Fluid-structure interaction analysis of the thromboembolic risk in the left atrial appendage under atrial fibrillation: effect of hemodynamics and morphological features. Comput Methods Programs Biomed 2024; 246: 108056
- 63 Lantz J, Gupta V, Henriksson L. et al. Impact of pulmonary venous inflow on cardiac flow simulations: comparison with in vivo 4D flow MRI. Ann Biomed Eng 2019; 47 (02) 413-424
- 64 Mill J, Harrison J, Saiz-Vivo M. et al. The role of the pulmonary veins on left atrial flow patterns and thrombus formation. Sci Rep 2024; 14 (01) 5860
- 65 Ding WY, Gupta D, Lip GYH. Atrial fibrillation and the prothrombotic state: revisiting Virchow's triad in 2020. Heart 2020; 106 (19) 1463-1468
- 66 Daccarett M, Badger TJ, Akoum N. et al. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol 2011; 57 (07) 831-838
- 67 Boyle PM, Del Álamo JC, Akoum N. Fibrosis, atrial fibrillation and stroke: clinical updates and emerging mechanistic models. Heart 2021; 107 (02) 99-105
- 68 Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol 2022; 19 (09) 593-606
- 69 Melidoro P, Sultan ARA, Qureshi A. et al. Enhancing stroke risk stratification in atrial fibrillation through non-Newtonian blood modelling and Gaussian process emulation. J Physiol 2024; . Epub ahead of print
- 70 Black IW, Chesterman CN, Hopkins AP, Lee LCL, Chong BH, Walsh WF. Hematologic correlates of left atrial spontaneous echo contrast and thromboembolism in nonvalvular atrial fibrillation. J Am Coll Cardiol 1993; 21 (02) 451-457
- 71 Gonzalo A, García-Villalba M, Rossini L. et al. Non-Newtonian blood rheology impacts left atrial stasis in patient-specific simulations. Int J Numer Methods Biomed Eng 2022; 38 (06) e3597
- 72 Melidoro P, Sabry M, Sultan ARA. et al. Comparing left atrial spontaneous echo contrast intensity with Gaussian process emulator predictions. In: Camara O. et al, eds. Statistical Atlases and Computational Models of the Heart. Workshop, CMRxRecon and MBAS Challenge Papers. STACOM 2024. (Lecture Notes in Computer Science; vol 15448). Springer, Cham; 2025: 443-452
- 73 Ruiz Herrera C, Grandits T, Plank G, Perdikaris P, Sahli Costabal F, Pezzuto S. Physics-informed neural networks to learn cardiac fiber orientation from multiple electroanatomical maps. Eng Comput 2022; 38: 3957-3973
- 74 Caforio F, Regazzoni F, Pagani S. et al. Physics-informed neural network estimation of material properties in soft tissue nonlinear biomechanical models. Comput Mech 2025; 75 (02) 487-513
- 75 Morales Ferez X, Mill J, Juhl KA. et al. Deep learning framework for real-time estimation of in-silico thrombotic risk indices in the left atrial appendage. Front Physiol 2021; 12: 694945
- 76 Saiz-Vivó M, Mill J, Iriart X. et al. Digital twin integrating clinical, morphological and hemodynamic data to identify stroke risk factors. NPJ Digit Med 2025; 8 (01) 369
- 77 Qureshi A, Melidoro P, Balmus M. et al. MRI-based modelling of left atrial flow and coagulation to predict risk of thrombogenesis in atrial fibrillation. Med Image Anal 2025; 101: 103475
- 78 Qureshi A, Darwish O, Dillon-Murphy D. et al. Modelling left atrial flow and blood coagulation for risk of thrombus formation in atrial fibrillation. Comput Cardiol 2020; 47
- 79 Qureshi A, Balmus M, Ogbomo-Harmitt S. et al. Modelling blood flow and biochemical reactions underlying thrombogenesis in atrial fibrillation. In: Bernard O, Clarysse P, Duchateau N, Ohayon J, Viallon M. eds. Functional Imaging and Modeling of the Heart. FIMH 2023. (Lecture Notes in Computer Science; vol 13958). Springer, Cham; 2023: 435-444
- 80 Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021; 18 (02) 203-211
- 81 Liu X, Lin H, Liu X. et al. LAFlowNet: a dynamic graph method for the prediction of velocity and pressure fields in left atrium and left atrial appendage. Eng Appl Artif Intell 2024; 136: 108896
- 82 Laha S, Fourtakas G, Das PK, Keshmiri A. Graphics processing unit accelerated modelling of thrombus formation in cardiovascular systems using smoothed particle hydrodynamics. Phys Fluids 2025; 37 (02) 021902
- 83 Viola F, Del Corso G, De Paulis R, Verzicco R. GPU accelerated digital twins of the human heart open new routes for cardiovascular research. Sci Rep 2023; 13 (01) 8230
- 84 Guerrero-Hurtado M, Garcia-Villalba M, Gonzalo A. et al. Efficient multi-fidelity computation of blood coagulation under flow. PLOS Comput Biol 2023; 19 (10) e1011583
- 85 Viceconti M, Pappalardo F, Rodriguez B, Horner M, Bischoff J, Musuamba Tshinanu F. In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 2021; 185: 120-127
- 86 Kjeldsberg HA, Albors C, Mill J. et al. Impact of left atrial wall motion assumptions in fluid simulations on proposed predictors of thrombus formation. Int J Numer Methods Biomed Eng 2024; 40 (06) e3825
- 87 Khalili E, Daversin-Catty C, Olivares AL, Mill J, Camara O, Valen-Sendstad K. On the importance of fundamental computational fluid dynamics toward a robust and reliable model of left atrial flows. Int J Numer Methods Biomed Eng 2024; 40 (04) e3804
- 88 Qureshi A, Balmus M, Lip GYH. et al. Mechanistic modelling of Virchows triad to assess thrombogenicity and stroke risk in atrial fibrillation patients. Eur Heart J Digit Health 2022; 3 (04) ztac076.2788
- 89 Qureshi A, Balmus M, Nechipurenko D. et al. Left Atrial Appendage Morphology Impacts Thrombus Formation Risks in Multi-Physics Atrial Models. In: 2021 Computing in Cardiology (CinC). IEEE; 2021: 1-4
- 90 Qureshi A, Balmus ME, Williams S. et al. Modelling Virchow's Triad to Improve Stroke Risk Assessment in Atrial Fibrillation Patients. In: Computing in Cardiology. 2022. Vol 49.
- 91 Valvez S, Oliveira-Santos M, Piedade AP, Gonçalves L, Amaro AM. Computational flow dynamic analysis in left atrial appendage thrombus formation risk: a review. Appl Sci (Basel) 2023; 13 (14) 8201
- 92 Olier I, Ortega-Martorell S, Pieroni M, Lip GYH. How machine learning is impacting research in atrial fibrillation: implications for risk prediction and future management. Cardiovasc Res 2021; 117 (07) 1700-1717
- 93 Viceconti M, De Vos M, Mellone S, Geris L. Position paper From the digital twins in healthcare to the Virtual Human Twin: a moon-shot project for digital health research. IEEE J Biomed Health Inform 2023; PP (01) 491-501
- 94 Ortega-Martorell S, Olier I, Lip GYH. TARGET consortium. A European network to develop virtual twin technology for personalized stroke management in atrial fibrillation: the TARGET consortium. Eur Heart J 2025; 46 (03) 229-232
- 95 Paciaroni M, Agnelli G, Corea F. et al. Early hemorrhagic transformation of brain infarction: rate, predictive factors, and influence on clinical outcome: results of a prospective multicenter study. Stroke 2008; 39 (08) 2249-2256
- 96 Andrade JBC, Mohr JP, Lima FO. et al. The role of hemorrhagic transformation in acute ischemic stroke upon clinical complications and outcomes. J Stroke Cerebrovasc Dis 2020; 29 (08) 104898
- 97 Albors C, Terreros NA, Saiz-Vivó M. et al. In silico estimation of thrombogenic risk after left atrial appendage excision: towards digital twins in atrial fibrillation. Comput Biol Med 2025; 194: 110483
- 98 Bell EJ, Lutsey PL, Basu S. et al. Lifetime risk of venous thromboembolism in two cohort studies. Am J Med 2016; 129 (03) 339.e19-339.e26
- 99 Henke PK, Kahn SR, Pannucci CJ. et al; American Heart Association Advocacy Coordinating Committee. Call to action to prevent venous thromboembolism in hospitalized patients: a policy statement from the American Heart Association. Circulation 2020; 141 (24) e914-e931
- 100 Winter MP, Schernthaner GH, Lang IM. Chronic complications of venous thromboembolism. J Thromb Haemost 2017; 15 (08) 1531-1540
- 101 Elliott CG, Goldhaber SZ, Jensen RL. Delays in diagnosis of deep vein thrombosis and pulmonary embolism. Chest 2005; 128 (05) 3372-3376
- 102 Rodger MA, Miranda S, Delluc A, Carrier M. Management of suspected and confirmed recurrent venous thrombosis while on anticoagulant therapy. What next?. Thromb Res 2019; 180: 105-109
- 103 Huisman MV, Klok FA. Current challenges in diagnostic imaging of venous thromboembolism. Blood 2015; 126 (21) 2376-2382
- 104 White RH. The epidemiology of venous thromboembolism. Circulation 2003; 107 (23, Suppl 1): I4-I8
- 105 Lutsey PL, Zakai NA. Epidemiology and prevention of venous thromboembolism. Nat Rev Cardiol 2023; 20 (04) 248-262
- 106 van Es N. Dynamic prediction modeling for cancer-associated venous thromboembolism. J Thromb Haemost 2020; 18 (06) 1276-1277
- 107 Lee D, Kim S, Lee S. et al. Deep learning-based dynamic risk prediction of venous thromboembolism for patients with ovarian cancer in real-world settings from electronic health records. JCO Clin Cancer Inform 2024; 8: e2300192
- 108 Piran S, Schulman S. Treatment of bleeding complications in patients on anticoagulant therapy. Blood 2019; 133 (05) 425-435
- 109 Ortel TL, Neumann I, Ageno W. et al. American Society of Hematology 2020 guidelines for management of venous thromboembolism: treatment of deep vein thrombosis and pulmonary embolism. Blood Adv 2020; 4 (19) 4693-4738
- 110 Stevens SM, Woller SC, Baumann Kreuziger L. et al. Executive summary: antithrombotic therapy for VTE disease: second update of the CHEST Guideline and expert panel report. Chest 2021; 160 (06) 2247-2259
- 111 Konstantinides SV, Meyer G, Becattini C. et al; ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 2020; 41 (04) 543-603
- 112 Bouchnita A, Terekhov K, Nony P, Vassilevski Y, Volpert V. A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PLoS One 2020; 15 (07) e0235392
- 113 Ratto N, Bouchnita A, Chelle P. et al. Patient-specific modelling of blood coagulation. Bull Math Biol 2021; 83 (05) 50
- 114 Bouchnita A, Volpert V, Kozulinas N, Belyaev AV, Panasenko G. Multiphase patient-specific simulations to study fibrillation-induced thrombosis in the left atrial appendage. Phys Fluids 2024; 36 (07)
- 115 Bessonov N, Sequeira A, Simakov S, Vassilevskii Yu, Volpert V. Methods of blood flow modelling. Math Model Nat Phenom 2016; 11 (01) 1-25
- 116 Belyaev AV, Dunster JL, Gibbins JM, Panteleev MA, Volpert V. Modeling thrombosis in silico: frontiers, challenges, unresolved problems and milestones. Phys Life Rev 2018; 26-27: 57-95
- 117 Bouchnita A, Nony P, Llored JP, Volpert V. Combining mathematical modeling and deep learning to make rapid and explainable predictions of the patient-specific response to anticoagulant therapy under venous flow. Math Biosci 2022; 349: 108830
- 118 Bouchnita A, Mozokhina A, Nony P, Llored JP, Volpert V. Combining computational modelling and machine learning to identify COVID-19 patients with a high thromboembolism risk. Mathematics 2023; 11 (02) 289
- 119 Bouchnita A, Yadav K, Llored JP, Gurovich A, Volpert V. Thrombin generation thresholds for coagulation initiation under flow. Axioms 2023; 12 (09) 873
- 120 Faxon DP, Fuster V, Libby P. et al; American Heart Association. Atherosclerotic vascular disease conference: writing group III: pathophysiology. Circulation 2004; 109 (21) 2617-2625
- 121 Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 1983; 53 (04) 502-514
- 122 Libby P. Inflammation in atherosclerosis. Nature 2002; 420 (6917) 868-874
- 123 Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5 (03) 293-302
- 124 Lievens D, von Hundelshausen P. Platelets in atherosclerosis. Thromb Haemost 2011; 106 (05) 827-838
- 125 Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 2010; 7 (02) 77-86
- 126 Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014; 114 (12) 1852-1866
- 127 Fuster V, Badimon J, Chesebro JH, Fallon JT. Plaque rupture, thrombosis, and therapeutic implications. Haemostasis 1996; 26 (Suppl. 04) 269-284
- 128 Pozzi S, Redaelli A, Vergara C, Votta E, Zunino P. Mathematical modelling and numerical simulation of atherosclerotic plaque progression based on fluid-structure interaction. J Math Fluid Mech 2021; 23 (03) 74
- 129 Chalmers AD, Cohen A, Bursill CA, Myerscough MR. Bifurcation and dynamics in a mathematical model of early atherosclerosis: how acute inflammation drives lesion development. J Math Biol 2015; 71 (6-7): 1451-1480
- 130 Cilla M, Peña E, Martínez MA. Mathematical modelling of atheroma plaque formation and development in coronary arteries. J R Soc Interface 2013; 11 (90) 20130866
- 131 Corti A, Chiastra C, Colombo M, Garbey M, Migliavacca F, Casarin S. A fully coupled computational fluid dynamics—agent-based model of atherosclerotic plaque development: multiscale modeling framework and parameter sensitivity analysis. Comput Biol Med 2020; 118: 103623
- 132 Silva T, Jäger W, Neuss-Radu M, Sequeira A. Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability. J Theor Biol 2020; 496: 110229
- 133 Thon MP, Hemmler A, Glinzer A. et al. A multiphysics approach for modeling early atherosclerosis. Biomech Model Mechanobiol 2018; 17 (03) 617-644
- 134 El Khatib N, Génieys S, Volpert V. Atherosclerosis initiation modeled as an inflammatory process. Math Model Nat Phenom 2007; 2 (02) 126-141
- 135 Calvez V, Houot JG, Meunier N, Raoult A, Rusnakova G. Mathematical and numerical modelling of early atherosclerotic lesions. ESAIM Proceedings 2010; 30: 1-14
- 136 Liu B, Tang D. Computer simulations of atherosclerotic plaque growth in coronary arteries. Mol Cell Biomech 2010; 7 (04) 193-202
- 137 Anand M, Rajagopal K, Rajagopal KR. A model for the formation and lysis of blood clots. Pathophysiol Haemost Thromb 2005; 34 (2-3): 109-120
- 138 Di Achille P, Tellides G, Humphrey JD. Hemodynamics-driven deposition of intraluminal thrombus in abdominal aortic aneurysms. Int J Numer Methods Biomed Eng 2017; 33 (05)
- 139 Xu Z, Chen N, Kamocka MM, Rosen ED, Alber M. A multiscale model of thrombus development. J R Soc Interface 2008; 5 (24) 705-722
- 140 Lin J, Chen S, Zhang C. et al. Recent advances in microfluidic technology of arterial thrombosis investigations. Platelets 2024; 35 (01) 2316743
- 141 Govindarajan V, Rakesh V, Reifman J, Mitrophanov AY. Computational study of thrombus formation and clotting factor effects under venous flow conditions. Biophys J 2016; 110 (08) 1869-1885
- 142 Colace TV, Muthard RW, Diamond SL. Thrombus growth and embolism on tissue factor-bearing collagen surfaces under flow: role of thrombin with and without fibrin. Arterioscler Thromb Vasc Biol 2012; 32 (06) 1466-1476
- 143 Alber M, Buganza Tepole A, Cannon WR. et al. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit Med 2019; 2 (01) 115
- 144 Smine Z, Melidoro P, Qureshi A. et al. Global sensitivity analysis of thrombus formation in the left atrial appendage of atrial fibrillation patients. In: Camara O. et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. (Lecture Notes in Computer Science; vol 14507). Springer, Cham; 2024: 55-65
- 145 Costabal FS, Matsuno K, Yao J, Perdikaris P, Kuhl E. Machine learning in drug development: characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification. Comput Methods Appl Mech Eng 2019; 348: 313-333
- 146 Longobardi S, Lewalle A, Coveney S. et al. Predicting left ventricular contractile function via Gaussian process emulation in aortic-banded rats. Philos Trans A Math Phys Eng Sci 2020; 378 (2173) 20190334
- 147 He X, Wang Y, Li J. Flow completion network: inferring the fluid dynamics from incomplete flow information using graph neural networks. Phys Fluids 2022; 34 (08)
- 148 Ballard JL, Wang Z, Li W, Shen L, Long Q. Deep learning-based approaches for multi-omics data integration and analysis. BioData Min 2024; 17 (01) 38
- 149 Polotskaya K, Muñoz-Valencia CS, Rabasa A, Quesada-Rico JA, Orozco-Beltrán D, Barber X. Bayesian networks for the diagnosis and prognosis of diseases: a scoping review. Mach Learn Knowl Extr 2024; 6 (02) 1243-1262
- 150 Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat Mach Intell 2021; 3 (03) 218-229
- 151 Regazzoni F, Pagani S, Salvador M, Dede' L, Quarteroni A. Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks. Nat Commun 2024; 15 (01) 1834
- 152 Madireddy S, Sista B, Vemaganti K. A Bayesian approach to selecting hyperelastic constitutive models of soft tissue. Comput Methods Appl Mech Eng 2015; 291: 102-122
- 153 Sahli Costabal F, Perdikaris P, Kuhl E, Hurtado DE. Multi-fidelity classification using Gaussian processes: accelerating the prediction of large-scale computational models. Comput Methods Appl Mech Eng 2019; 357: 112602
- 154 Olier I, Zhan Y, Liang X, Volovici V. Causal inference and observational data. BMC Med Res Methodol 2023; 23 (01) 227
- 155 Wu X, Peng S, Li J. et al. Causal inference in the medical domain: a survey. Appl Intell 2024; 54 (06) 4911-4934
- 156 Chahine Y, Magoon MJ, Maidu B, Del Álamo JC, Boyle PM, Akoum N. Machine learning and the conundrum of stroke risk prediction. Arrhythm Electrophysiol Rev 2023; 12: e07
- 157 Vision Paul V, Masood JAIS. Exploring predictive methods for cardiovascular disease: a survey of methods and applications. IEEE Access 2024; 12: 101497-101505
- 158 Richens JG, Lee CM, Johri S. Improving the accuracy of medical diagnosis with causal machine learning. Nat Commun 2020; 11 (01) 3923
- 159 Plecko D, Bareinboim E. Causal fairness for outcome control. arXiv 2023
- 160 Armoundas AA, Narayan SM, Arnett DK. et al; American Heart Association Institute for Precision Cardiovascular Medicine, Council on Cardiovascular and Stroke Nursing, Council on Lifelong Congenital Heart Disease and Heart Health in the Young, Council on Cardiovascular Radiology and Intervention, Council on Hypertension, Council on the Kidney in Cardiovascular Disease, and Stroke Council. Use of artificial intelligence in improving outcomes in heart disease: a scientific statement from the American Heart Association. Circulation 2024; 149 (14) e1028-e1050
- 161 Ogbomo-Harmitt S, Muffoletto M, Zeidan A, Qureshi A, King AP, Aslanidi O. Exploring interpretability in deep learning prediction of successful ablation therapy for atrial fibrillation. Front Physiol 2023; 14: 1054401
- 162 Hernandez RJ, Roberts PA, El-Bouri WK. Advancing treatment of retinal disease through in silico trials. Prog Biomed Eng (Bristol) 2023; 5 (02) 022002
- 163 Konduri PR, Marquering HA, van Bavel EE, Hoekstra A, Majoie CBLM. INSIST Investigators. In-silico trials for treatment of acute ischemic stroke. Front Neurol 2020; 11: 558125
- 164 Józsa TI, Padmos RM, Samuels N, El-Bouri WK, Hoekstra AG, Payne SJ. A porous circulation model of the human brain for in silico clinical trials in ischaemic stroke. Interface Focus 2021; 11 (01) 20190127
- 165 Petkantchin R, Padmos R, Boudjeltia KZ, Raynaud F, Chopard B. INSIST investigators. Thrombolysis: observations and numerical models. J Biomech 2022; 132: 110902
- 166 Józsa TI, Petr J, Payne SJ, Mutsaerts HJMM. MRI-based parameter inference for cerebral perfusion modelling in health and ischaemic stroke. Comput Biol Med 2023; 166: 107543
- 167 Chen X, Wang J, van Kranendonk KR. et al. Mathematical modelling of haemorrhagic transformation in the human brain. Appl Math Model 2023; 121: 96-110
- 168 Xue Y, El-Bouri WK, Józsa TI, Payne SJ. Modelling the effects of cerebral microthrombi on tissue oxygenation and cell death. J Biomech 2021; 127: 110705
- 169 El-Bouri WK, MacGowan A, Józsa TI, Gounis MJ, Payne SJ. Modelling the impact of clot fragmentation on the microcirculation after thrombectomy. PLOS Comput Biol 2021; 17 (03) e1008515
- 170 Graff BJ, Payne SJ, El-Bouri WK. The ageing brain: investigating the role of age in changes to the human cerebral microvasculature with an in silico model. Front Aging Neurosci 2021; 13: 632521
- 171 FDA. Assessing the Credibility of Computational Modelling and Simulation in Medical Device Submissions. 2023 . Accessed at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/assessing-credibility-computational-modelling-and-simulation-medical-device-submissions
- 172 Pathmanathan P, Aycock K, Badal A. et al. Credibility assessment of in silico clinical trials for medical devices. PLOS Comput Biol 2024; 20 (08) e1012289
- 173 Fisher CK, Smith AM, Walsh JR. Coalition Against Major Diseases, Abbott, Alliance for Aging Research, Alzheimer's Association, Alzheimer's Foundation of America, AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Critical Path Institute, CHDI Foundation, Inc., Eli Lilly and Company, F. Hoffmann-La Roche Ltd, Forest Research Institute, Genentech, Inc., GlaxoSmithKline, Johnson & Johnson, National Health Council, Novartis Pharmaceuticals Corporation, Parkinson's Action Network, Parkinson's Disease Foundation, Pfizer, Inc., sanofi-aventis. Collaborating Organizations: Clinical Data Interchange Standards Consortium (CDISC), Ephibian, Metrum Institute. Machine learning for comprehensive forecasting of Alzheimer's Disease progression. Sci Rep 2019; 9 (01) 13622
- 174 Roney CH, Sim I, Yu J. et al. Predicting atrial fibrillation recurrence by combining population data and virtual cohorts of patient-specific left atrial models. Circ Arrhythm Electrophysiol 2022; 15 (02) e010253
- 175 Payne S, Józsa TI, El-Bouri WK. Review of in silico models of cerebral blood flow in health and pathology. Prog Biomed Eng (Bristol) 2023; 5 (02) 022003
- 176 Hernandez RJ, Madhusudhan S, Zheng Y, El-Bouri WK. Linking vascular structure and function: image-based virtual populations of the retina. Invest Ophthalmol Vis Sci 2024; 65 (04) 40
- 177 Sel K, Hawkins-Daarud A, Chaudhuri A. et al. Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine. NPJ Digit Med 2025; 8 (01) 40
- 178 National Academies of Sciences, Engineering, and Medicine, National Academy of Engineering, Division on Earth and Life Studies, Division on Engineering and Physical Sciences, Board on Atmospheric Sciences and Climate, Board on Life Sciences, Computer Science and Telecommunications Board, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Committee on Foundational Research Gaps and Future Directions for Digital Twins. Foundational Research Gaps and Future Directions for Digital Twins. Washington DC: National Academies Press; 2024
- 179 Mirams GR, Niederer SA, Clayton RH. The fickle heart: uncertainty quantification in cardiac and cardiovascular modelling and simulation. Philos Trans A Math Phys Eng Sci 2020; 378 (2173) 20200119
- 180 Tunedal K, Ebbers T, Cedersund G. Uncertainty in cardiovascular digital twins despite non-normal errors in 4D flow MRI: identifying reliable biomarkers such as ventricular relaxation rate. Comput Biol Med 2025; 188: 109878
- 181 Roy A, Varela M, Chubb H. et al. Identifying locations of re-entrant drivers from patient-specific distribution of fibrosis in the left atrium. PLOS Comput Biol 2020; 16 (09) e1008086
- 182 Muffoletto M, Qureshi A, Zeidan A. et al. Toward patient-specific prediction of ablation strategies for atrial fibrillation using deep learning. Front Physiol 2021; 12: 674106
- 183 Corrado C, Roney CH, Razeghi O. et al. Quantifying the impact of shape uncertainty on predicted arrhythmias. Comput Biol Med 2023; 153: 106528
- 184 Liu CM, Chang SL, Chen HH. et al. The clinical application of the deep learning technique for predicting trigger origins in patients with paroxysmal atrial fibrillation with catheter ablation. Circ Arrhythm Electrophysiol 2020; 13 (11) e008518
- 185 Trayanova NA, Prakosa A. Up digital and personal: how heart digital twins can transform heart patient care. Heart Rhythm 2024; 21 (01) 89-99
- 186 Bhagirath P, Strocchi M, Bishop MJ, Boyle PM, Plank G. From bits to bedside: entering the age of digital twins in cardiac electrophysiology. Europace 2024; 26 (12) euae295
- 187 Lal R, Nicoud F, Bars EL. et al. Non invasive blood flow features estimation in cerebral arteries from uncertain medical data. Ann Biomed Eng 2017; 45 (11) 2574-2591
- 188 Eloranta S, Boman M. Predictive models for clinical decision making: deep dives in practical machine learning. J Intern Med 2022; 292 (02) 278-295
- 189 Amirahmadi A, Ohlsson M, Etminani K. Deep learning prediction models based on EHR trajectories: a systematic review. J Biomed Inform 2023; 144: 104430
- 190 Zaidan E, Ibrahim IA. AI governance in a complex and rapidly changing regulatory landscape: a global perspective. Humanit Soc Sci Commun 2024; 11 (01) 1121
- 191 McGrath CP. The state and values of AI governance in UK healthcare. In: Research Handbook on Health, AI and the Law. Edward Elgar Publishing; 2024: 291-310
- 192 Mourby M, Ó Cathaoir K, Collin CB. Transparency of machine-learning in healthcare: The GDPR & European health law. Comput Law Secur Rev 2021; 43: 105611
- 193 Donelan M, Camrose V. Data Protection and Digital Information Bill. UK Parliament; 2024
- 194 Medicines and Healthcare products Regulatory Agency. Impact of AI on the regulation of medical products. 2024; available at: https://www.gov.uk/government/publications/impact-of-ai-on-the-regulation-of-medical-products
- 195 Calderon. Assembly Bill No. 3030–Health Care Services: Artificial Intelligence. California State Assembly; 2024
- 196 Becker. Senate Bill No. 1120 - Health Care Coverage. Utilization Review; 2024; available at: https://calmatters.digitaldemocracy.org/bills/ca_202320240sb1120
- 197 van Kolfschooten H, van Oirschot J. The EU Artificial Intelligence Act (2024): implications for healthcare. Health Policy 2024; 149: 105152
- 198 McMahan BH, Moore E, Ramage D, Hampson S, Aguera y Arcas B. Communication-efficient learning of deep networks from decentralized data. In: McMahan HB, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data. International Conference on Artificial Intelligence and Statistics. 2016
- 199 Khan M, Glavin FG, Nickles M. Federated learning as a privacy solution—an overview. Procedia Comput Sci 2023; 217: 316-325
- 200 Rieke N, Hancox J, Li W. et al. The future of digital health with federated learning. NPJ Digit Med 2020; 3 (01) 119
- 201 Truong N, Sun K, Wang S, Guitton F, Guo Y. Privacy preservation in federated learning: an insightful survey from the GDPR perspective. Comput Secur 2021; 110: 102402
- 202 Feger J, Baba Y, Elfeky M. Late gadolinium enhancement. In: Radiopaedia.Org. Radiopaedia.org; 2020.
- 203 Carroll D, Murphy A, Bell D. Transthoracic echocardiography. In: Radiopaedia.Org. Radiopaedia.org; 2018.
- 204 Radswiki T, Hacking C, Feger J. Intracardiac thrombus. In: Radiopaedia.Org. Radiopaedia.org; 2010.
- 205 English K. Upper extremity deep vein thrombosis. In: Radiopaedia.Org. Radiopaedia.org; 2023.
- 206 Gaillard F, Knipe H, Silverstone L. Deep vein thrombosis. In: Radiopaedia.Org. Radiopaedia.org; 2008.
- 207 Weerakkody Y, Kogan J, Feger J. Internal carotid artery stenosis (classification). In: Radiopaedia.Org. Radiopaedia.org; 2010.
- 208 Di Muzio B. MR angiography of the thoracic aorta. In: Radiopaedia.Org. Radiopaedia.org; 2015.
- 209 Murphy A, Foster T, Knipe H. CT angiography of the chest (protocol). In: Radiopaedia.Org. Radiopaedia.org; 2019.