RSS-Feed abonnieren
DOI: 10.1055/a-2760-5392
Focused ultrasound-mediated drug delivery systems: a technological overview, possible musculoskeletal applications, and future directions
Verabreichung von Medikamenten mittels fokussierten Ultraschalls: ein technologischer Überblick, mögliche Anwendungen am Bewegungsapparat und weitere PerspektiveAutor*innen
Abstract
Background
Innovation in focused ultrasound (FUS) has led to new applications for treating musculoskeletal pathologies, including oncologic, infectious, and degenerative diseases. Focused ultrasound-mediated drug delivery is particularly interesting in fields in which high selectivity and localized action are needed to avoid unwanted side effects or therapy failure, for example with antineoplastic and antimicrobial drugs.
Method
For this paper, a literature search of the PubMed database was performed using the keywords “focused ultrasound” and “musculoskeletal applications”.
Conclusion
This review article presents an overview of the currently available technologies for focused ultrasound-mediated drug delivery and their possible musculoskeletal applications, along with a discussion of recent promising preclinical and clinical results.
Key Points
-
Focused ultrasound is able to deliver drugs in a very selective way.
-
Focused ultrasound-mediated hyperthermia may be promising for treating bone infections.
-
Focused ultrasound-mediated drug delivery may also be an elegant method for treating bone cancer and arthritis.
Citation Format
-
Sassi R, Gazzotti S, Aparisi Gómez MP et al. Focused ultrasound-mediated drug delivery systems: a technological overview, possible musculoskeletal applications, and future directions. Rofo 2025; DOI 10.1055/a-2760-5392
Zusammenfassung
Hintergrund
Innovationen im Bereich des (hochintensiven) fokussierten Ultraschalls (FUS) haben zu neuen Anwendungen bei der Behandlung von Erkrankungen des Bewegungsapparats geführt, darunter onkologische, infektiöse und degenerative Erkrankungen. Die Verabreichung von Medikamenten mittels FUS ist besonders in den Bereichen interessant, in denen eine hohe Selektivität und lokalisierte Wirkung erforderlich sind, um unerwünschte Nebenwirkungen oder Therapieversagen zu vermeiden, beispielsweise bei antineoplastischen und antimikrobiellen Medikamenten.
Methodik
Eine Literatursuche wurde mittels der PubMed-Datenbank durchgeführt, wobei als primäre Schlüsselwörter „focused ultrasound“ und „musculoskeletal applications“ verwendet wurden. Anschließend wurde die Suche pro Unterthema verfeinert, indem das Schlüsselwort „drug delivery“, verknüpft mit Begriffen „cancer“, „bone cancer“, „bone infections“, „antibiotics“ und „osteoarthritis“, hinzugefügt wurde.
Schlussfolgerung
Dieser Übersichtsartikel bietet einen Überblick über die derzeit verfügbaren Technologien für die Verabreichung von Medikamenten mittels FUS und ihre möglichen Anwendungen am Bewegungsapparat sowie eine Diskussion der jüngsten vielversprechenden präklinischen und klinischen Ergebnisse.
Kernaussagen
-
(Hochintensiver) Fokussierter Ultraschall kann Medikamente sehr selektiv verabreichen.
-
Hyperthermie mit FUS könnte bei der Behandlung von Knocheninfektionen vielversprechend sein.
-
Die Verabreichung von Medikamenten mit FUS könnte auch eine elegante Methode zur Behandlung von Knochenmalignomen und der Arthritis sein.
Keywords
Drug delivery systems - Thermal ablation - Sonoporation - Musculoskeletal application - Focused ultrasoundPublikationsverlauf
Eingereicht: 07. Februar 2025
Angenommen nach Revision: 20. November 2025
Artikel online veröffentlicht:
30. Januar 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Izadifar Z, Izadifar Z, Chapman D. et al. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J Clin Med 2020; 9: 460
- 2 Bazzocchi A, Napoli A, Sacconi B. et al. MRI-guided focused ultrasound surgery in musculoskeletal diseases: the hot topics. Br J Radiol 2016; 89: 20150358
- 3 Ter Haar G, Coussios C. High intensity focused ultrasound: Physical principles and devices. Int J Hyperthermia 2007; 23: 89-104
- 4 Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia 2009; 25: 3-20
- 5 Slotman DJ, Bartels MMTJ, Ferrer CJ. et al. Focused Ultrasound and RadioTHERapy for non-invasive palliative pain treatment in patients with bone metastasis: a study protocol for the three armed randomized controlled FURTHER trial. Trials 2022; 23
- 6 Düx DM, Baal JD, Bitton R. et al. MR-guided focused ultrasound therapy of extra-abdominal desmoid tumors: a multicenter retrospective study of 105 patients. Eur Radiol 2023; 34: 1137-1145
- 7 McClure A. Using High-Intensity Focused Ultrasound as a Means to Provide Targeted Drug Delivery: A Literature Review. J Diagn Med Sonogr 2016; 32: 343-350
- 8 Mainprize T, Lipsman N, Huang Y. et al. Blood-Brain Barrier Opening in Primary Brain Tumors with Non-invasive MR-Guided Focused Ultrasound: A Clinical Safety and Feasibility Study. Sci Rep 2019; 9: 321
- 9 Miller DL, Averkiou MA, Brayman AA. et al. Bioeffects Considerations for Diagnostic Ultrasound Contrast Agents. J Ultrasound Med 2008; 27: 611-632
- 10 Brooks BD, Brooks AE. Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 2014; 78: 14-27
- 11 Jain KK. Drug Delivery Systems – An Overview. In: Jain KK. , ed. Drug Delivery Systems. Totowa, NJ: Humana Press; 2008: 1-50
- 12 Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 2008; 60: 1153-1166
- 13 Chen K-J, Chaung E-Y, Wey S-P. et al. Hyperthermia-Mediated Local Drug Delivery by a Bubble-Generating Liposomal System for Tumor-Specific Chemotherapy. ACS Nano 2014; 8: 5105-5115
- 14 Schutt EG, Klein DH, Mattrey RM. et al. Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals. Angew Chem Int Ed 2003; 42: 3218-3235
- 15 Baun J. Contrast-Enhanced Ultrasound: A Technology Primer. J Diagn Med Sonogr 2017; 33: 446-452
- 16 Metoki R, Moriyasu F, Kamiyama N. et al. Quantification of hepatic parenchymal blood flow by contrast ultrasonography with flash-replenishment imaging. Ultrasound Med Biol 2006; 32: 1459-1466
- 17 Kooiman K, Vos HJ, Versluis M. et al. Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 2014; 72: 28-48
- 18 Moyer LC, Timbie KF, Sheeran PS. et al. High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles. J Ther Ultrasound 2015; 3: 7
- 19 Chowdhury SM, Abou-Elkacem L, Lee T. et al. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. J Controlled Release 2020; 326: 75-90
- 20 Mitchell MJ, Billingsley MM, Haley RM. et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20: 101-124
- 21 Bregoli L, Movia D, Gavigan-Imedio JD. et al. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine Nanotechnol Biol Med 2016; 12: 81-103
- 22 Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold Nanoparticles in Cancer Treatment. Mol Pharm 2019; 16: 1-23
- 23 Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33: 941-951
- 24 Entzian K, Aigner A. Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021; 13: 1135
- 25 Geers B, Lentacker I, Sanders NN. et al. Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. J Controlled Release 2011; 152: 249-256
- 26 Tran S, DeGiovanni P, Piel B. et al. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 2017; 6: e44
- 27 Yildirim A, Blum NT, Goodwin AP. Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics 2019; 9: 2572-2594
- 28 Nakatsuka MA, Lee JH, Nakayama E. et al. Facile one-pot synthesis of polymer–phospholipid composite microbubbles with enhanced drug loading capacity for ultrasound-triggered therapy. Soft Matter 2011; 7: 1656
- 29 Sheeran SP, Dayton AP. Phase-Change Contrast Agents for Imaging and Therapy. Curr Pharm Des 2012; 18: 2152-2165
- 30 Sun T, Zhang YS, Pang B. et al. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew Chem Int Ed 2014; 53: 12320-12364
- 31 Staruch RM, Hynynen K, Chopra R. Hyperthermia-mediated doxorubicin release from thermosensitive liposomes using MR-HIFU: Therapeutic effect in rabbit Vx2 tumours. Int J Hyperthermia 2015; 31: 118-133
- 32 Landon CD. Nanoscale Drug Delivery and Hyperthermia: The Materials Design and Preclinical and Clinical Testing of Low Temperature-Sensitive Liposomes Used in Combination with Mild Hyperthermia in the Treatment of Local Cancer. Open Nanomedicine J 2011; 3: 24-37
- 33 Regenold M, Bannigan P, Evans JC. et al. Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes. Nanomedicine Nanotechnol Biol Med 2022; 40: 102484
- 34 de Smet M, Heijman E, Langereis S. et al. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release Off J Control Release Soc 2011; 150: 102-110
- 35 Santos MA, Goertz DE, Hynynen K. Focused Ultrasound Hyperthermia Mediated Drug Delivery Using Thermosensitive Liposomes and Visualized With in vivo Two-Photon Microscopy. Theranostics 2017; 7: 2718-2731
- 36 Lyon PC, Gray MD, Mannaris C. et al. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial. Lancet Oncol 2018; 19: 1027-1039
- 37 Spiers L, Gray M, Lyon P. et al. Clinical trial protocol for PanDox: a phase I study of targeted chemotherapy delivery to non-resectable primary pancreatic tumours using thermosensitive liposomal doxorubicin (ThermoDox) and focused ultrasound. BMC Cancer 2023; 23: 896
- 38 De Maar JS, Suelmann BBM, Braat MNGJA. et al. Phase I feasibility study of Magnetic Resonance guided High Intensity Focused Ultrasound-induced hyperthermia, Lyso-Thermosensitive Liposomal Doxorubicin and cyclophosphamide in de novo stage IV breast cancer patients: study protocol of the i-GO study. BMJ Open 2020; 10: e040162
- 39 Nelson JL, Roeder BL, Carmen JC. et al. Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 2002; 62: 7280-7283
- 40 Vítková L, Kazantseva N, Musilová L. et al. Magneto-responsive hyaluronan hydrogel for hyperthermia and bioprinting: Magnetic, rheological properties and biocompatibility. APL Bioeng 2023; 7: 036113
- 41 Mallick S, Abouomar R, Rivas D. et al. Doxorubicin-Loaded Microrobots for Targeted Drug Delivery and Anticancer Therapy. Adv Healthc Mater 2023; 2300939
- 42 Paez-Muñoz JM, Gámez F, Fernández-Afonso Y. et al. Optimization of iron oxide nanoparticles for MRI-guided magnetic hyperthermia tumor therapy: reassessing the role of shape in their magnetocaloric effect. J Mater Chem B 2023; 11: 11110-11120
- 43 Ren H, Xiang S, Liu A. et al. A noval noninvasive targeted therapy for osteosarcoma: the combination of LIFU and ultrasound-magnetic-mediated SPIO/TP53/PLGA nanobubble. Front Bioeng Biotechnol 2024; 12: 1418903
- 44 Pullan JE, Pullan AT, Taylor VB. et al. Energy-triggered drug release from polymer nanoparticles for orthopedic applications. Ther Deliv 2017; 8: 5-14
- 45 Vinay R, KusumDevi V. Potential of targeted drug delivery system for the treatment of bone metastasis. Drug Deliv 2016; 23: 21-29
- 46 Dababou S, Marrocchio C, Scipione R. et al. High-Intensity Focused Ultrasound for Pain Management in Patients with Cancer. RadioGraphics 2018; 38: 603-623
- 47 Zhang M, Liu L, Wang J. et al. Effects of High-Intensity Focused Ultrasound for Treatment of Abdominal Lymph Node Metastasis From Gastric Cancer. J Ultrasound Med 2015; 34: 435-440
- 48 Janwadkar R, Leblang S, Ghanouni P. et al. Focused Ultrasound for Pediatric Diseases. Pediatrics 2022; 149: e2021052714
- 49 Tran S, DeGiovanni P, Piel B. et al. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 2017; 6: e44
- 50 Horise Y, Maeda M, Konishi Y. et al. Sonodynamic Therapy With Anticancer Micelles and High-Intensity Focused Ultrasound in Treatment of Canine Cancer. Front Pharmacol 2019; 10: 545
- 51 AeRang K. A Phase I Study of Lyso-thermosensitive Liposomal Doxorubicin and MR-HIFU for Pediatric Refractory Solid Tumors. clinicaltrials.gov. https://clinicaltrials.gov/study/NCT02536183
- 52 Sebeke LC, Castillo Gómez JD, Heijman E. et al. Hyperthermia-induced doxorubicin delivery from thermosensitive liposomes via MR-HIFU in a pig model. J Controlled Release 2022; 343: 798-812
- 53 Gristina AG, Costerton JW. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J Bone Joint Surg Am 1985; 67: 264-273
- 54 Joo H-S, Otto M. Molecular Basis of In Vivo Biofilm Formation by Bacterial Pathogens. Chem Biol 2012; 19: 1503-1513
- 55 Tande AJ, Patel R. Prosthetic Joint Infection. Clin Microbiol Rev 2014; 27: 302-345
- 56 Serra R, Grande R, Butrico L. et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther 2015; 13: 605-613
- 57 Metsemakers W-J, Fragomen AT, Moriarty TF. et al. Evidence-Based Recommendations for Local Antimicrobial Strategies and Dead Space Management in Fracture-Related Infection. J Orthop Trauma 2020; 34: 18-29
- 58 Kaiser P, Wächter J, Windbergs M. Therapy of infected wounds: overcoming clinical challenges by advanced drug delivery systems. Drug Deliv Transl Res 2021; 11: 1545-1567
- 59 Wardlow R, Bing C, VanOsdol J. et al. Targeted antibiotic delivery using low temperature-sensitive liposomes and magnetic resonance-guided high-intensity focused ultrasound hyperthermia. Int J Hyperthermia 2016; 32: 254-264
- 60 Bharatula LD, Marsili E, Rice SA. et al. Influence of High Intensity Focused Ultrasound on the Microstructure and c-di-GMP Signaling of Pseudomonas aeruginosa Biofilms. Front Microbiol 2020; 11: 599407
- 61 Lew DP, Waldvogel FA. Osteomyelitis. Lancet Lond Engl 2004; 364: 369-379
- 62 Ford CA, Cassat JE. Advances in the local and targeted delivery of anti-infective agents for management of osteomyelitis. Expert Rev Anti Infect Ther 2017; 15: 851-860
- 63 Ashar H, Singh A, Ektate K. et al. Treating methicillin-resistant Staphylococcus aureus (MRSA) bone infection with focused ultrasound combined thermally sensitive liposomes. Int J Hyperthermia 2023; 40: 2211278
- 64 Abramoff B, Caldera FE. Osteoarthritis. Med Clin North Am 2020; 104: 293-311
- 65 Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 2013; 21: 16-21
- 66 Bird HA. Controversies in the treatment of osteoarthritis. Clin Rheumatol 2003; 22: 165-167
- 67 Feng X, Xu W, Li Z. et al. Immunomodulatory Nanosystems. Adv Sci 2019; 6: 1900101
- 68 Tsai P, Richards K, Tatom I. The association between knee temperature and pain in elders with osteoarthritis of the knee: a pilot study. J Adv Nurs 2003; 42: 373-381
- 69 Nieminen HJ, Lampsijärvi E, Barreto G. et al. Localized delivery of compounds into articular cartilage by using high-intensity focused ultrasound. Sci Rep 2019; 9: 15937
- 70 Zhang M, Hu W, Cai C. et al. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater Today Bio 2022; 14: 100223
- 71 Betre H, Liu W, Zalutsky MR. et al. A thermally responsive biopolymer for intra-articular drug delivery. J Controlled Release 2006; 115: 175-182
- 72 Liao A-H, Chung H-Y, Chen W-S. et al. Efficacy of Combined Ultrasound-and-Microbubbles-Mediated Diclofenac Gel Delivery to Enhance Transdermal Permeation in Adjuvant-Induced Rheumatoid Arthritis in the Rat. Ultrasound Med Biol 2016; 42: 1976-1985
- 73 Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med 2019; 4: e10143
- 74 Chen J, Hu S, Sun M. et al. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur J Pharm Sci 2024; 106688
- 75 Hua S, De Matos MBC, Metselaar JM. et al. Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization. Front Pharmacol 2018; 9: 790
- 76 Etter EL, Mei K-C, Nguyen J. Delivering more for less: nanosized, minimal-carrier and pharmacoactive drug delivery systems. Adv Drug Deliv Rev 2021; 179: 113994
