RSS-Feed abonnieren
DOI: 10.1055/a-2733-3971
Unveiling the Power of Tunable RXZnCH2I Carbenoids for the Cyclopropanation of Olefins
Autor*innen

Abstract
Cyclopropanes are both valuable building blocks in synthetic chemistry and important functional moieties existing in natural products and biologically active molecules. The Simmons–Smith cyclopropanation has become a very useful and reliable method for the synthesis of cyclopropanes from olefins. Aiming at the development of tunable and highly reactive zinc carbenoids, Shi and coworkers proposed an effective strategy for the generation of zinc carbenoids RXZnCH2I by reacting RXH with an appropriate organozinc reagent, which allows tuning the reactivity of RXZnCH2I reagents simply by changing the modifier RXH. This type of carbenoid reagent- is known as Shi carbenoid or reagent and has been found to be highly effective for each type of olefins, which attracts intensive attention and results in numerous successful applications in the synthesis of complex molecules, as well as important cyclopropane building blocks. Significantly, the asymmetric Simmons–Smith cyclopropanation of unfunctionalized olefins has also been achieved using a chiral modifier.
Keywords
Cyclopropane - Simmons–Smith reaction - Zinc carbenoids - Shi carbenoids - Asymmetric cyclopropanationPublikationsverlauf
Eingereicht: 17. September 2025
Angenommen nach Revision: 27. Oktober 2025
Accepted Manuscript online:
27. Oktober 2025
Artikel online veröffentlicht:
26. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Salaon J, Baird MS. Curr Med Chem 1995; 2: 511-542
- 1b Salaün J. In: Small Ring Compounds in Organic Synthesis VI. Topics in Current Chemistry. de Meijere A. ed. Vol. 207. Berlin, Heidelberg: Springer; 2000: 1-67
- 1c Donaldson WA. Tetrahedron 2001; 57: 8589-8627
- 1d Faust R. Angew Chem Int Ed 2001; 40: 2251-2253
- 1e Pietruszka J. Chem Rev 2003; 103: 1051-1070
- 1f Reichelt A, Martin SF. Acc Chem Res 2006; 39: 433-442
- 1g Carson CA, Kerr MA. Chem Soc Rev 2009; 38: 3051-3060
- 1h Zhang D, Song H, Qin Y. Acc Chem Res 2011; 44: 447-457
- 2a Wong HNC, Hon M-Y. et al. Chem Rev 1989; 89: 165-198
- 2b Salaün J. Chem Rev 1989; 89: 1247-1270
- 2c Rappoport Z. The Chemistry of the Cyclopropyl Group. Vol. 2. Chichester: John Wiley & Sons; 1995: 1-962
- 2d Reissig H-U, Zimmer R. Chem Rev 2003; 103: 1151-1196
- 2e Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321-347
- 2f Goudreau SR, Charette AB. Angew Chem Int Ed 2010; 49: 486-488
- 2g Lebold TP, Kerr MA. Pure Appl Chem 2010; 82: 1797-1812
- 2h Roy M-N, Lindsay VNG, Charette AB. In: Science of Synthesis, Stereoselective Synthesis. de Vries JG. ed. Vol. 1. Thieme; 2011: 733-817
- 2i Ebner C, Carreira EM. Chem Rev 2017; 117: 11651-11679
- 3a Maas G. Chem Soc Rev 2004; 33: 183-190
- 3b Cousinsa GS, Hoberg JO. Chem Soc Rev 2000; 29: 165-174
- 3c Mato M, Franchino A, García-Morales C, Echavarren AM. Chem Rev 2021; 121: 8613-8684
- 4a Simmons HE, Smith RD. J Am Chem Soc 1958; 80: 5323-5324
- 4b Simmons HE, Smith RD. J Am Chem Soc 1959; 81: 4256-4264
- 5a Simmons HE, Cairns TL, Vladuchick SA, Hoiness CM. Org React 1973; 20: 1
- 5b Hoveyda AH, Evans DA, Fu GC. Chem Rev 1993; 93: 1307-1370
- 5c Charette AB, Marcoux J-F. Synlett 1995; 1197-1207
- 5d Lautens M, Klute W, Tam W. Chem Rev 1996; 96: 49-92
- 5e Charette AB, Beauchemin A. Org React 2001; 58: 1
- 5f Denmark SE, Beutner G. In: Cycloaddition Reactions in Organic Synthesis. Kobayashi S, Jørgensen KA. eds. Weinheim: Wiley-VCH; 2002: 85-150
- 5g Lebel H, Marcoux J-F, Molinaro C, Charette AB. Chem Rev 2003; 103: 977-1050
- 5h Charette AB. In: The Chemistry of Organozinc Compounds. Rappoport Z, Marek I. eds. West Sussex UK: John Wiley & Sons; 2006: 237-286
- 5i Pellissier H. Tetrahedron 2008; 64: 7041-7095
- 5j Maleki A. Synlett 2009; 1690-1691
- 5k Fuchter MJ. In: Name Reactions for Carbocyclic Ring Formations. Li JJ. ed Hoboken; John Wiley & Sons: 2010: 24-44
- 6a Wittig G, Schwarzenbach K. Angew Chem 1959; 71: 652-652
- 6b Furukawa J, Kawabata N, Nishimura J. Tetrahedron Lett 1966; 7: 3353-3354
- 6c Furukawa J, Kawabata N, Nishimura J. Tetrahedron 1968; 24: 53-58
- 6d Nishimura J, Furukawa J, Kawabata N, Kitayama M. Tetrahedron 1971; 27: 1799-1806
- 6e Charette AB, Marcoux J-F, Molinaro C, Beauchemin A, Brochu C, Isabel É. J Am Chem Soc 2000; 122: 4508-4509
- 6f Denmark SE, Edwards JP. J Org Chem 1991; 56: 6974-6981
- 6g Charette AB, Beauchemin A, Marcoux J-F. Tetrahedron Lett 1999; 40: 33-36
- 7a Yang Z, Lorenz JC, Shi Y. Tetrahedron Lett 1998; 39: 8621-8624
- 7b Lorenz JC, Long J, Yang Z, Xue S, Xie Y, Shi Y. J Org Chem 2004; 69: 327-334
- 8 Charette AB, Beauchemin A, Francoeur S. J Am Chem Soc 2001; 123: 8139-8140
- 9 Charette AB, Lacasse M-C. Org Lett 2002; 4: 3351-3353
- 10 Bagutski V, de Meijere A. Adv Synth Catal 2007; 349: 1247-1255
- 11 Davies SG, Ling KB, Roberts PM, Russell AJ, Thomson JE. Chem Commun 2007; 4029-4031
- 12 Csatayová K, Davies SG, Lee JA. et al. Tetrahedron 2010; 66: 8420-8440
- 13 Valenta P, Carroll PJ, Walsh PJ. J Am Chem Soc 2010; 132: 14179-14190
- 14 Csatayová K, Davies SG, Lee JA. et al. Org Lett 2010; 12: 3152-3155
- 15 Vabre R, Island B, Diehl CJ, Schreiner PR, Marek I. Angew Chem Int Ed 2015; 54: 9996-9999
- 16 Huang F, Zheng X, Lin X. et al. Chem Sci 2020; 11: 10159-10166
- 17 Cornwall RG, Wong OA, Du H, Ramirez TA, Shi Y. Org Biomol Chem 2012; 10: 5498-5513
- 18 Kim HY, Lurain AE, García-García P, Carroll PJ, Walsh PJ. J Am Chem Soc 2005; 127: 13138-13139
- 19 Kim HY, Walsh PJ. Acc Chem Res 2012; 45: 1533-1547
- 20 Benoit G, Charette AB. J Am Chem Soc 2017; 139: 1364-1367
- 21 Cheng D, Huang D, Shi Y. Org Biomol Chem 2013; 11: 5588-5591
- 22 Long J, Yuan Y, Shi Y. J Am Chem Soc 2003; 125: 13632-13633
- 23 Long J, Du H, Li K, Shi Y. Tetrahedron Lett 2005; 46: 2737-2740
- 24 Du H, Long J, Shi Y. Org Lett 2006; 8: 2827-2829
- 25 Long J, Xu L, Du H, Li K, Shi Y. Org Lett 2009; 11: 5226-5229
- 26 Frey LF, Marcantonio KM, Chen C-Y. et al. Tetrahedron 2003; 59: 6363-6373
- 27 O'Shea PD, Chen C-Y, Chen W. et al. J Org Chem 2005; 70: 3021-3030
- 28 Jao E, Bogen S, Saksena AK, Girijavallabhan V. Tetrahedron Lett 2003; 44: 5033-5035
- 29 Xu B, Feng Y, Cheng H. et al. Bioorg Med Chem Lett 2011; 21: 4465-4470
- 30 Young IS, Qiu Y, Smith MJ, Hay MB, Doubleday WW. Org Process Res Dev 2016; 20: 2108-2115
- 31 Zhang X, Yu S, Liu Z. et al. Org Progress Res Dev 2022; 26: 1054-1062
- 32 Benjahad A, Oumouch S, Guillemont J. et al. Bioorg Med Chem Lett 2007; 17: 712-716
- 33 Hamilton JY, Hauser N, Sarlah D, Carreira EM. Angew Chem Int Ed 2014; 53: 10759-10762
- 34 Pei W, Krauss IJ. J Am Chem Soc 2011; 133: 18514-18517
- 35 Mihovilovic MD, Rudroff F, Grötzl B, Stanetty P. Eur J Org Chem 2005; 809-816
- 36 Zhuo J, Burns DM, Zhang C. et al. Synlett 2007; 3: 460-464
- 37 Lv B, Xu B, Feng Y. et al. Bioorg Med Chem Lett 2009; 19: 6877-6881
- 38 Bojase G, Nguyen TV, Payne AD, Willis AC, Sherburn MS. Chem Sci 2011; 2: 229-232
- 39 Pulido FJ, Barbero A, Castreño P. J Org Chem 2011; 76: 5850-5855
- 40 Hassam M, Basson AE, Liotta DC, Morris L, van Otterlo WAL, Pelly SC. ACS Med Chem Lett 2012; 3: 470-475
- 41 Tymtsunik AV, Bilenko VA, Ivon YM, Grygorenko OO, Komarov IV. Tetrahedron Lett 2012; 53: 3847-3849
- 42 Hoyt SB, London C, Abbadie C. et al. Bioorg Med Chem Lett 2013; 23: 3640-3645
- 43 Deng J, Ning Y, Tian H, Gui J. J Am Chem Soc 2020; 142: 4690-4695
- 44 Chung J, Capani Jr JS, Göhl M, Roosen PC, Vanderwal CD. J Am Chem Soc 2023; 145: 6486-6497
- 45 Bueno B, Heurtaux S, Gagnon A. J Org Chem 2023; 88: 13351-13357
- 46 Carter KN, Taverner T, Schiesser CH, Greenberg MM. J Org Chem 2000; 65: 8375-8378
- 47 Rossi R, Carpita A, Ribecai A, Mannina L. Tetrahedron 2001; 57: 2847-2856
- 48 Carpita A, Ribecai A, Rossi R, Stabile P. Tetrahedron 2002; 58: 3673-3680
- 49 Finn KJ, Rochon L, Hudlicky T. Tetrahedron Asymmetry 2005; 16: 3606-3613
- 50 Cachoux F, Isarno T, Wartmann M, Altmann K-H. Synlett 2006; 9: 1384-1388
- 51 Erickson LW, Lucas EL, Tollefson EJ, Jarvo ER. J Am Chem Soc 2016; 138: 14006-14011
- 52 Maeda H, Sakurai H, Segi M. ACS Omega 2017; 2: 8697-8708
- 53 Ueno M, Miyoshi N, Hanada K, Kobayashi S. Asian J Org Chem 2020; 9: 267-273
- 54 Evans DA, Burch JD. Org Lett 2001; 3: 503-505
- 55 Evans DA, Burch JD, Hu E, Jaeschke G. Tetrahedron 2008; 64: 4671-4699
- 56 Lam PYS, Vincent G, Bonne D, Clark CG. Tetrahedron Lett 2003; 44: 4927-4931
- 57 Reddel JCT, Lutz KE, Diagne AB, Thomson RJ. Angew Chem Int Ed 2014; 53: 1395-1398
- 58 Bassan EM, Baxter CA, Beutner GL. et al. Org Process Res Dev 2012; 16: 87-95
- 59 Flick AC, Ding HX, Leverett CA, Fink SJ, O'Donnell CJ. J Med Chem 2018; 61: 7004-7031
- 60 Murray SA, Luc ECM, Meek SJ. Org Lett 2018; 20: 469-472
- 61 Maton WM, Stazi F, Manzo AM. et al. Org Process Res Dev 2010; 14: 1239-1247
- 62 Fu C, Zhang Y, Xuan J, Zhu C, Wang B, Ding H. Org Lett 2014; 16: 3376-3379
- 63 Domínguez-Pérez B, Ferrer É, Figueredo M. et al. J Org Chem 2015; 80: 9495-9505
- 64 Abe M, Nishikawa K, Fukuda H. et al. Phytochemistry 2012; 84: 56-67
- 65 Ma C, Shi C, Liu Y, Pan L, Zhang X, Zou J-J. Ind Eng Chem Res 2021; 60: 10978-10987
- 66 McBriar MD, Guzik H, Xu R. et al. J Med Chem 2005; 48: 2274-2277
- 67 Xu R, Li S, Paruchova J. et al. Bioorg Med Chem 2006; 14: 3285-3299
- 68 Sünnemann HW, Banwell MG, de Meijere A. Chem Eur J 2008; 14: 7236-7249
- 69 Hosokawa S, Matsushita K, Tokimatsu S, Toriumi T, Suzuki Y, Tatsuta K. Tetrahedron Lett 2010; 51: 5532-5536
- 70 Xue S, Li L-Z, Liu Y-K, Guo Q-X. J Org Chem 2006; 71: 215-218
- 71 Jiang Y-L, Yu H-X, Li Y. et al. J Am Chem Soc 2020; 142: 573-580
- 72 Landwehr EM, Baker MA, Oguma T, Burdge HE, Kawajiri T, Shenvi RA. Science 2022; 375: 1270-1274
- 73 Clarkson R, Komsta Z, Mayes BA. et al. J Org Chem 2015; 80: 2198-2215
- 74 Fukui N, Ohmori K, Suzuki K. Helv Chim Acta 2012; 95: 2194-2217
- 75 Polyak D, Xu B, Krauss IJ. Org Lett 2022; 24: 4656-4659
- 76 Hussain MM, Li H, Hussain N, Ureña M, Carroll PJ, Walsh PJ. J Am Chem Soc 2009; 131: 6516-6524
- 77a de Meijere A, Khlebnikov AF, Kozhushkov SI. et al. Angew Chem Int Ed 2004; 43: 6553-6557
- 77b de Meijere A, Khlebnikov AF, Kozhushkov SI. et al. Chem Eur J 2006; 12: 5697-5721
- 78 Gampe CM, Carreira EM. Chem Eur J 2012; 18: 15761-15771
- 79 Lovato K, Bhakta U, Ng YP, Kürti L. Org Biomol Chem 2020; 18: 3281-3287
- 80 Mali M, Sharma GVM, Ghosh S, Roisnel T, Carboni B, Berrée F. J Org Chem 2022; 87: 7649-7657
For leading reviews on cyclopropanes in natural products, see:
For leading reviews on cyclopropanes in organic synthesis, see:
For recent reviews on metal-catalyzed cyclopropanation, see:
For leading reviews, see: