Subscribe to RSS
DOI: 10.1055/a-2722-5684
Hepatocellular Carcinoma – from Immunobiology to Immunotherapy
HCC – von der Immunbiologie zur ImmuntherapieAuthors
Supported by: Deutsches Konsortium für Translationale Krebsforschung
Supported by: Deutsche Forschungsgemeinschaft 272983813 ,390939984 ,441891347,520992132
Abstract
Hepatocellular Carcinoma (HCC) is an entity characterized by a highly heterogenous tumor immune microenvironment. The introduction of immune checkpoint inhibitor (ICI) therapy as standard of care in advanced disease stages and with promising results in earlier stages has highlighted the need for a better understanding of the underlying immunobiology. In this review, we provide a summary about the immune landscape in HCC and discuss novel potential therapeutic targets as well as how spatial immune profiling may help identify optimal candidates for ICI therapy.
Zusammenfassung
Das Hepatozelluläre Karzinom (HCC) zeichnet sich durch ein heterogenes Tumorimmunmilieu aus. Die Einführung von Immuncheckpointinhibitoren (ICI) als Standardtherapie bei fortgeschrittenem HCC sowie als vielversprechende Option in früheren Krankheitsstadien hebt die Bedeutung eines besseren Verständnisses der zugrunde liegenden Tumorimmunologie hervor. Diese Übersichtsarbeit fasst die immunologische Landschaft beim HCC zusammen, stellt potenzielle neue Therapieoptionen dar und geht im Besonderen auf die Bedeutung von räumlichen Analysen bei der Auswahl geeigneter Patienten für Immuntherapien ein.
Schlüsselwörter
Leber - Onkologie - Immuntherapie - Immunologie - Hepatozelluläres Karzinom - ImmunotypPublication History
Received: 15 August 2025
Accepted after revision: 03 November 2025
Article published online:
26 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Zentrum für Krebsregisterdaten RKI. Krebs in Deutschland, p 44–47. 2023 Accessed August 10, 2025 at: https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/krebs_in_deutschland_2023.pdf?__blob=publicationFile
- 2 Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 1999; 19: 329-338
- 3 Reig M, Forner A, Rimola J. et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol 2022; 76: 681-693
- 4 Llovet JM, Ricci S, Mazzaferro V. et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390
- 5 Cheng A-L, Kang Y-K, Chen Z. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. The Lancet Oncology 2009; 10
- 6 Kudo M, Finn RS, Qin S. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet 2018; 391: 1163-1173
- 7 El-Khoueiry AB, Sangro B, Yau T. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. The Lancet 2017; 389: 2492-2502
- 8 Yau T, Park JW, Finn RS. et al. LBA38_PR – CheckMate 459: A randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Annals of Oncology 2019; 30: v874-v875
- 9 Zhu AX, Finn RS, Edeline J. et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. The Lancet Oncology 2018; 19: 940-952
- 10 Finn RS, Ryoo B-Y, Merle P. et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2020. Accessed August 03, 2020 at: https://pubmed.ncbi.nlm.nih.gov/31790344/
- 11 Finn RS, Qin S, Ikeda M. et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. The New England journal of medicine 2020. Accessed August 03, 2020 at: https://pubmed.ncbi.nlm.nih.gov/32402160/
- 12 Abou-Alfa GK, Lau G, Kudo M. et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evidence 2022; 1: EVIDoa2100070
- 13 Yau T, Galle PR, Decaens T. et al. Nivolumab plus ipilimumab versus lenvatinib or sorafenib as first-line treatment for unresectable hepatocellular carcinoma (CheckMate 9DW): an open-label, randomised, phase 3 trial. The Lancet 2025; 405: 1851-1864
- 14 Qin S, Kudo M, Meyer T. et al. Tislelizumab vs Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Phase 3 Randomized Clinical Trial. JAMA oncology 2023; 9
- 15 Kelley RK, Rimassa L, Cheng A-L. et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. The Lancet Oncology 2022; 23
- 16 Llovet JM, Kudo M, Merle P. et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial. The Lancet Oncology 2023; 24
- 17 Qin S, Chan SL, Gu S. et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. Lancet (London, England) 2023; 402
- 18 Scheiner B, Kang B, Balcar L. et al. Outcome and management of patients with hepatocellular carcinoma who achieved a complete response to immunotherapy-based systemic therapy. Hepatology 2025; 81: 1714-1727
- 19 Horst AK, Neumann K, Diehl L. et al. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 2016; 13: 277-292
- 20 Zheng M, Tian Z. Liver-Mediated Adaptive Immune Tolerance. Front Immunol 2019; 10
- 21 Rennert C, Lang-Meli J, Gromak M. et al. Perspectives for novel therapeutic concepts in hepatocellular carcinoma targeting the stromal and innate immune microenvironment. Liver Cancer International 2023; 4: 42-57
- 22 Calderaro J, Ziol M, Paradis V. et al. Molecular and histological correlations in liver cancer. Journal of Hepatology 2019; 71: 616-630
- 23 Pfister D, Núñez NG, Pinyol R. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021; 592: 450-456
- 24 Sharma A, Seow JJW, Dutertre C-A. et al. Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma. Cell 2020; 183: 377-394.e21
- 25 Lanzanò L, Coto Hernández I, Castello M. et al. Encoding and decoding spatio-temporal information for super-resolution microscopy. Nat Commun 2015; 6: 6701
- 26 Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11: 762-774
- 27 Yang F, Wei Y, Han D. et al. Interaction with CD68 and Regulation of GAS6 Expression by Endosialin in Fibroblasts Drives Recruitment and Polarization of Macrophages in Hepatocellular Carcinoma. Cancer Res 2020; 80: 3892-3905
- 28 Yuan Y, Wu D, Li J. et al. Mechanisms of tumor-associated macrophages affecting the progression of hepatocellular carcinoma. Front Pharmacol 2023; 14
- 29 Liu P-S, Wang H, Li X. et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 2017; 18: 985-994
- 30 Tripathi C, Tewari BN, Kanchan RK. et al. Macrophages are recruited to hypoxic tumor areas and acquire a Pro-Angiogenic M2-Polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 2014; 5: 5350-5368
- 31 Lu Y, Yang A, Quan C. et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat Commun 2022; 13: 4594
- 32 Fan G, Xie T, Li L. et al. Single-cell and spatial analyses revealed the co-location of cancer stem cells and SPP1+ macrophage in hypoxic region that determines the poor prognosis in hepatocellular carcinoma. NPJ Precis Oncol 2024; 8: 75
- 33 Tan J, Fan W, Liu T. et al. TREM2+ macrophages suppress CD8+ T-cell infiltration after transarterial chemoembolisation in hepatocellular carcinoma. J Hepatol 2023; 79: 126-140
- 34 Zhou L, Wang M, Guo H. et al. Integrated Analysis Highlights the Immunosuppressive Role of TREM2+ Macrophages in Hepatocellular Carcinoma. Front Immunol 2022; 13: 848367
- 35 Roderfeld M, Rath T, Lammert F. et al. Innovative immunohistochemistry identifies MMP-9 expressing macrophages at the invasive front of murine HCC. World J Hepatol 2010; 2: 175-179
- 36 Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 2011; 32: 19-25
- 37 Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res 2017; 5: 3-8
- 38 Millrud CR, Bergenfelz C, Leandersson K. On the origin of myeloid-derived suppressor cells. Oncotarget 2017; 8: 3649-3665
- 39 Mandruzzato S, Brandau S, Britten CM. et al. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunol Immunother 2016; 65: 161-169
- 40 Bronte V, Brandau S, Chen S-H. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 2016; 7: 12150
- 41 Hoechst B, Ormandy LA, Ballmaier M. et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008; 135: 234-243
- 42 Arihara F, Mizukoshi E, Kitahara M. et al. Increase in CD14+HLA-DR -/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother 2013; 62: 1421-1430
- 43 Zhang X, Fu X, Li T. et al. The prognostic value of myeloid derived suppressor cell level in hepatocellular carcinoma: A systematic review and meta-analysis. PLoS One 2019; 14: e0225327
- 44 Ma C, Zhang Q, Greten TF. MDSCs in liver cancer: A critical tumor-promoting player and a potential therapeutic target. Cell Immunol 2021; 361: 104295
- 45 Chiu DK-C, Xu IM-J, Lai RK-H. et al. Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology 2016; 64: 797-813
- 46 Kasic T, Colombo P, Soldani C. et al. Modulation of human T-cell functions by reactive nitrogen species. Eur J Immunol 2011; 41: 1843-1849
- 47 Kusmartsev S, Nefedova Y, Yoder D. et al. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 2004; 172: 989-999
- 48 Ohl K, Tenbrock K. Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression. Front Immunol 2018; 9: 2499
- 49 Hoechst B, Voigtlaender T, Ormandy L. et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 2009; 50: 799-807
- 50 Lacotte S, Slits F, Orci LA. et al. Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma. Oncoimmunology 2016; 5: e1234565
- 51 Tomiyama T, Itoh S, Iseda N. et al. Myeloid‑derived suppressor cell infiltration is associated with a poor prognosis in patients with hepatocellular carcinoma. Oncology Letters 2022; 23: 1-9
- 52 Del Prete A, Salvi V, Soriani A. et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol 2023; 20: 432-447
- 53 Ormandy LA, Färber A, Cantz T. et al. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol 2006; 12: 3275-3282
- 54 Saito Y, Komori S, Kotani T. et al. The Role of Type-2 Conventional Dendritic Cells in the Regulation of Tumor Immunity. Cancers (Basel) 2022; 14: 1976
- 55 Li W, Chen G, Peng H. et al. Research Progress on Dendritic Cells in Hepatocellular Carcinoma Immune Microenvironments. Biomolecules 2024; 14: 1161
- 56 Suthen S, Lim CJ, Nguyen PHD. et al. Hypoxia-driven immunosuppression by Treg and type-2 conventional dendritic cells in HCC. Hepatology 2022;
- 57 Pang L, Yeung OWH, Ng KTP. et al. Postoperative Plasmacytoid Dendritic Cells Secrete IFNα to Promote Recruitment of Myeloid-Derived Suppressor Cells and Drive Hepatocellular Carcinoma Recurrence. Cancer Res 2022; 82: 4206-4218
- 58 Shi J-Y, Gao Q, Wang Z-C. et al. Margin-infiltrating CD20(+) B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin Cancer Res 2013; 19: 5994-6005
- 59 Brunner SM, Itzel T, Rubner C. et al. Tumor-infiltrating B cells producing antitumor active immunoglobulins in resected HCC prolong patient survival. Oncotarget 2017; 8: 71002-71011
- 60 Garnelo M, Tan A, Her Z. et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut 2017; 66: 342-351
- 61 Trailin A, Červenková L, Ambrozkiewicz F. et al. T- and B-Cells in the Inner Invasive Margin of Hepatocellular Carcinoma after Resection Associate with Favorable Prognosis. Cancers (Basel) 2022; 14: 604
- 62 Faggioli F, Palagano E, Di Tommaso L. et al. B lymphocytes limit senescence-driven fibrosis resolution and favor hepatocarcinogenesis in mouse liver injury. Hepatology 2018; 67: 1970-1985
- 63 Wei Y, Lao X-M, Xiao X. et al. Plasma Cell Polarization to the Immunoglobulin G Phenotype in Hepatocellular Carcinomas Involves Epigenetic Alterations and Promotes Hepatoma Progression in Mice. Gastroenterology 2019; 156: 1890-1904.e16
- 64 Neo SY, Shuen TWH, Khare S. et al. Atypical memory B cells acquire Breg phenotypes in hepatocellular carcinoma. JCI Insight 2025; 10: e187025
- 65 Ouyang F-Z, Wu R-Q, Wei Y. et al. Dendritic cell-elicited B-cell activation fosters immune privilege via IL-10 signals in hepatocellular carcinoma. Nat Commun 2016; 7: 13453
- 66 Shao Y, Lo CM, Ling CC. et al. Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway. Cancer Lett 2014; 355: 264-272
- 67 Xue H, Lin F, Tan H. et al. Overrepresentation of IL-10-Expressing B Cells Suppresses Cytotoxic CD4+ T Cell Activity in HBV-Induced Hepatocellular Carcinoma. PLoS One 2016; 11: e0154815
- 68 Xiao X, Lao X-M, Chen M-M. et al. PD-1hi Identifies a Novel Regulatory B-cell Population in Human Hepatoma That Promotes Disease Progression. Cancer Discov 2016; 6: 546-559
- 69 Shalapour S, Lin X-J, Bastian IN. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 2017; 551: 340-345
- 70 Liu R-X, Wei Y, Zeng Q-H. et al. Chemokine (C-X-C motif) receptor 3-positive B cells link interleukin-17 inflammation to protumorigenic macrophage polarization in human hepatocellular carcinoma. Hepatology 2015; 62: 1779-1790
- 71 Sun Y, Wu P, Zhang Z. et al. Integrated multi-omics profiling to dissect the spatiotemporal evolution of metastatic hepatocellular carcinoma. Cancer Cell 2024; 42: 135-156.e17
- 72 Dusseaux M, Martin E, Serriari N. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17–secreting T cells. Blood 2011; 117: 1250-1259
- 73 Heymann F, Tacke F. Immunology in the liver — from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016; 13: 88-110
- 74 Hudspeth K, Donadon M, Cimino M. et al. Human liver-resident CD56bright/CD16neg NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J Autoimmun 2016; 66: 40-50
- 75 Taketomi A, Shimada M, Shirabe K. et al. Natural killer cell activity in patients with hepatocellular carcinoma: a new prognostic indicator after hepatectomy. Cancer 1998; 83: 58-63
- 76 Xue J-S, Ding Z-N, Meng G-X. et al. The Prognostic Value of Natural Killer Cells and Their Receptors/Ligands in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13: 872353
- 77 Jia G, He P, Dai T. et al. Spatial immune scoring system predicts hepatocellular carcinoma recurrence. Nature 2025; 640: 1031-1041
- 78 Molgora M, Bonavita E, Ponzetta A. et al. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature 2017; 551: 110-114
- 79 Cai L, Zhang Z, Zhou L. et al. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol 2008; 129: 428-437
- 80 Sun H, Huang Q, Huang M. et al. Human CD96 Correlates to Natural Killer Cell Exhaustion and Predicts the Prognosis of Human Hepatocellular Carcinoma. Hepatology 2019; 70: 168-183
- 81 Yoshida Y, Yoshio S, Yamazoe T. et al. Phenotypic Characterization by Single-Cell Mass Cytometry of Human Intrahepatic and Peripheral NK Cells in Patients with Hepatocellular Carcinoma. Cells 2021; 10: 1495
- 82 Yu L, Liu X, Wang X. et al. TIGIT+ TIM-3+ NK cells are correlated with NK cell exhaustion and disease progression in patients with hepatitis B virus‑related hepatocellular carcinoma. Oncoimmunology 2021; 10: 1942673
- 83 Sun Y, Li T, Ding L. et al. Platelet-mediated circulating tumor cell evasion from natural killer cell killing through immune checkpoint CD155-TIGIT. Hepatology 2025; 81: 791-807
- 84 Rennert C, Tauber C, Fehrenbach P. et al. Adaptive Subsets Limit the Anti-Tumoral NK-Cell Activity in Hepatocellular Carcinoma. Cells 2021; 10: 1369
- 85 Wei H, Suo C, Gu X. et al. AKR1D1 suppresses liver cancer progression by promoting bile acid metabolism-mediated NK cell cytotoxicity. Cell Metab 2025; 37: 1103-1118.e7
- 86 Pesce S, Greppi M, Tabellini G. et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization. J Allergy Clin Immunol 2017; 139: 335-346.e3
- 87 Treiner E, Duban L, Bahram S. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003; 422: 164-169
- 88 Duan M, Goswami S, Shi J-Y. et al. Activated and Exhausted MAIT Cells Foster Disease Progression and Indicate Poor Outcome in Hepatocellular Carcinoma. Clinical Cancer Research 2019; 25: 3304-3316
- 89 Ruf B, Bruhns M, Babaei S. et al. Tumor-associated macrophages trigger MAIT cell dysfunction at the HCC invasive margin. Cell 2023; 186: 3686-3705.e32
- 90 Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 2010; 28: 445-489
- 91 Hirano S, Iwashita Y, Sasaki A. et al. Increased mRNA expression of chemokines in hepatocellular carcinoma with tumor-infiltrating lymphocytes. Journal of Gastroenterology and Hepatology 2007; 22: 690-696
- 92 Budhu A, Forgues M, Ye Q-H. et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006; 10: 99-111
- 93 Ma C, Kesarwala AH, Eggert T. et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016; 531: 253-257
- 94 Zheng C, Snow BE, Elia AJ. et al. Tumor-specific cholinergic CD4+ T lymphocytes guide immunosurveillance of hepatocellular carcinoma. Nat Cancer 2023; 4: 1437-1454
- 95 Barsch M, Salié H, Schlaak AE. et al. T cell exhaustion and residency dynamics inform clinical outcomes in hepatocellular carcinoma. J Hepatol 2022;
- 96 Deenick EK, Ma CS. The regulation and role of T follicular helper cells in immunity. Immunology 2011; 134: 361-367
- 97 Magen A, Hamon P, Fiaschi N. et al. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat Med 2023; 29: 1389-1399
- 98 Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 2012; 72: 2162-2171
- 99 Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41: 450-465
- 100 Schmidt A, Oberle N, Krammer PH. Molecular Mechanisms of Treg-Mediated T Cell Suppression. Front Immunol 2012; 3
- 101 Huang Y, Liao H, Zhang Y. et al. Prognostic Value of Tumor-Infiltrating FoxP3+ T Cells in Gastrointestinal Cancers: A Meta Analysis. PLoS ONE 2014; 9: e94376
- 102 Lim CJ, Lee YH, Pan L. et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 2019; 68: 916-927
- 103 Tu J-F, Ding Y-H, Ying X-H. et al. Regulatory T cells, especially ICOS+ FOXP3+ regulatory T cells, are increased in the hepatocellular carcinoma microenvironment and predict reduced survival. Sci Rep 2016; 6: 35056
- 104 Wang H, Zhang H, Wang Y. et al. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis. J Hepatol 2021; 75: 1271-1283
- 105 Yang P, Li Q-J, Feng Y. et al. TGF-β-miR-34a-CCL22 Signaling-Induced Treg Cell Recruitment Promotes Venous Metastases of HBV-Positive Hepatocellular Carcinoma. Cancer Cell 2012; 22: 291-303
- 106 Llovet JM, Bustamante J, Castells A. et al. Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials. Hepatology 1999; 29: 62-67
- 107 Schöniger-Hekele M, Müller C, Kutilek M. et al. Hepatocellular carcinoma in Central Europe: prognostic features and survival. Gut 2001; 48: 103-109
- 108 You M, Gao Y, Fu J. et al. Epigenetic regulation of HBV-specific tumor-infiltrating T cells in HBV-related HCC. Hepatology 2023; 78: 943-958
- 109 Giles JR, Globig A-M, Kaech SM. et al. CD8+ T cells in the cancer-immunity cycle. Immunity 2023; 56: 2231-2253
- 110 Barry M, Bleackley RC. Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2002; 2: 401-409
- 111 Koh C-H, Lee S, Kwak M. et al. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55: 2287-2299
- 112 Gabrielson A, Wu Y, Wang H. et al. Intratumoral CD3 and CD8 T-cell Densities Associated with Relapse-Free Survival in HCC. Cancer Immunol Res 2016; 4: 419-430
- 113 Gao Q, Qiu S-J, Fan J. et al. Intratumoral Balance of Regulatory and Cytotoxic T Cells Is Associated With Prognosis of Hepatocellular Carcinoma After Resection. JCO 2007; 25: 2586-2593
- 114 Hofmann M, Tauber C, Hensel N. et al. CD8+ T Cell Responses during HCV Infection and HCC. J Clin Med 2021; 10: 991
- 115 McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu Rev Immunol 2019; 37: 457-495
- 116 Bengsch B, Johnson AL, Kurachi M. et al. Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8+ T Cell Exhaustion. Immunity 2016; 45: 358-373
- 117 Huang AC, Postow MA, Orlowski RJ. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017; 545: 60-65
- 118 Zhang Z, Langenbach M, Sagar S. et al. Efficacy of CTLA-4 checkpoint therapy is dependent on IL-21 signaling to mediate cytotoxic reprogramming of PD-1+CD8+ T cells. Nat Immunol 2025; 26: 92-104
- 119 Shin H, Wherry EJ. CD8 T cell dysfunction during chronic viral infection. Curr Opin Immunol 2007; 19: 408-415
- 120 Zajac AJ, Blattman JN, Murali-Krishna K. et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 1998; 188: 2205-2213
- 121 Zheng L, Qin S, Si W. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 2021; 374: abe6474
- 122 Sen DR, Kaminski J, Barnitz RA. et al. The epigenetic landscape of T cell exhaustion. Science 2016; 354: 1165-1169
- 123 Wherry EJ, Ha S-J, Kaech SM. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 2007; 27: 670-684
- 124 Paley MA, Kroy DC, Odorizzi PM. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 2012; 338: 1220-1225
- 125 Speiser DE, Utzschneider DT, Oberle SG. et al. T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion?. Nat Rev Immunol 2014; 14: 768-774
- 126 Bengsch B, Ohtani T, Khan O. et al. Epigenomic-Guided Mass Cytometry Profiling Reveals Disease-Specific Features of Exhausted CD8 T Cells. Immunity 2018; 48: 1029-1045.e5
- 127 Siddiqui I, Schaeuble K, Chennupati V. et al. Intratumoral Tcf1+PD-1+CD8+ T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. Immunity 2019; 50: 195-211.e10
- 128 Utzschneider DT, Gabriel SS, Chisanga D. et al. Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nat Immunol 2020; 21: 1256-1266
- 129 Im SJ, Hashimoto M, Gerner MY. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 2016; 537: 417-421
- 130 Miller BC, Sen DR, Al Abosy R. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol 2019; 20: 326-336
- 131 Utzschneider DT, Charmoy M, Chennupati V. et al. T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections. Immunity 2016; 45: 415-427
- 132 Wu T, Ji Y, Moseman EA. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci Immunol 2016; 1: eaai8593
- 133 Cheng Y, Gunasegaran B, Singh HD. et al. Non-terminally exhausted tumor-resident memory HBV-specific T cell responses correlate with relapse-free survival in hepatocellular carcinoma. Immunity 2021; 54: 1825-1840.e7
- 134 Chew V, Lai L, Pan L. et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A 2017; 114: E5900-E5909
- 135 Kim H-D, Song G-W, Park S. et al. Association Between Expression Level of PD1 by Tumor-Infiltrating CD8+ T Cells and Features of Hepatocellular Carcinoma. Gastroenterology 2018; 155: 1936-1950.e17
- 136 Kim H-D, Park S, Jeong S. et al. 4–1BB Delineates Distinct Activation Status of Exhausted Tumor-Infiltrating CD8+ T Cells in Hepatocellular Carcinoma. Hepatology 2020; 71: 955-971
- 137 Zheng C, Zheng L, Yoo J-K. et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell 2017; 169: 1342-1356.e16
- 138 Barsch M, Salié H, Mesesan A. et al. T cells in the heterogeneous tumour immune microenvironment of hepatocellular carcinoma: Implications for immune checkpoint inhibitor therapy. Liver Cancer International 2023; 4: 58-72
- 139 Hung MH, Lee JS, Ma C. et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat Commun 2021; 12: 1455
- 140 Liu F, LiuWeirenSaninDavid E.. et al. Heterogeneity of exhausted T cells in the tumor microenvironment is linked to patient survival following resection in hepatocellular carcinoma. OncoImmunology 2020; 9: 1746573
- 141 Ma J, Zheng B, Goswami S. et al. PD1Hi CD8+ T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J Immunother Cancer 2019; 7: 331
- 142 Steiner C, Denlinger N, Huang X. et al. Stem-like CD8+ T cells in cancer. Front Immunol 2024; 15: 1426418
- 143 Jang EJ, Choi HJ, You YK. et al. Differential Infiltration of T-Cell Populations in Tumor and Liver Tissues Predicts Recurrence-Free Survival in Surgically Resected Hepatocellular Carcinoma. Cancers (Basel) 2025; 17: 1548
- 144 Park M-S, Jo H, Kim H. et al. Molecular landscape of tumor-associated tissue-resident memory T cells in tumor microenvironment of hepatocellular carcinoma. Cell Commun Signal 2025; 23: 80
- 145 Yan F, Zhu B, Shi K. et al. Prognostic and therapeutic potential of imbalance between PD-1+CD8 and ICOS+Treg cells in advanced HBV-HCC. Cancer Sci 2024; 115: 2553-2564
- 146 Dudek M, Pfister D, Donakonda S. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 2021; 592: 444-449
- 147 Feola S, Chiaro J, Martins B. et al. Uncovering the Tumor Antigen Landscape: What to Know about the Discovery Process. Cancers (Basel) 2020; 12: 1660
- 148 Dong L-Q, Peng L-H, Ma L-J. et al. Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma. J Hepatol 2020; 72: 896-908
- 149 Lu L, Jiang J, Zhan M. et al. Targeting Tumor-Associated Antigens in Hepatocellular Carcinoma for Immunotherapy: Past Pitfalls and Future Strategies. Hepatology 2021; 73: 821-832
- 150 Flecken T, Schmidt N, Hild S. et al. Immunodominance and functional alterations of tumor‐associated antigen‐specific CD8+ T‐cell responses in hepatocellular carcinoma. Hepatology 2014; 59: 1415-1426
- 151 Zhou G, Sprengers D, Boor PPC. et al. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas. Gastroenterology 2017; 153: 1107-1119.e10
- 152 Tauber C, Schultheiss M, Luca RD. et al. Inefficient induction of circulating TAA-specific CD8+ T-cell responses in hepatocellular carcinoma. Oncotarget 2019; 10: 5194-5206
- 153 Puig-Saus C, Sennino B, Peng S. et al. Neoantigen-targeted CD8+ T cell responses with PD-1 blockade therapy. Nature 2023; 615: 697-704
- 154 Xie N, Shen G, Gao W. et al. Neoantigens: promising targets for cancer therapy. Sig Transduct Target Ther 2023; 8: 1-38
- 155 Petrizzo A, Tagliamonte M, Mauriello A. et al. Unique true predicted neoantigens (TPNAs) correlates with anti-tumor immune control in HCC patients. J Transl Med 2018; 16: 286
- 156 Aggeletopoulou I, Pantzios S, Triantos C. Personalized Immunity: Neoantigen-Based Vaccines Revolutionizing Hepatocellular Carcinoma Treatment. Cancers 2025; 17: 376
- 157 Liu T, Tan J, Wu M. et al. High-affinity neoantigens correlate with better prognosis and trigger potent antihepatocellular carcinoma (HCC) activity by activating CD39+CD8+ T cells. Gut 2021; 70: 1965-1977
- 158 Maravelia P, Yao H, Cai C. et al. Unlocking novel T cell-based immunotherapy for hepatocellular carcinoma through neoantigen-driven T cell receptor isolation. Gut 2025; 74: 1125-1136
- 159 Rojas LA, Sethna Z, Soares KC. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023; 618: 144-150
- 160 Yarchoan M, Gane EJ, Marron TU. et al. Personalized neoantigen vaccine and pembrolizumab in advanced hepatocellular carcinoma: a phase 1/2 trial. Nat Med 2024; 30: 1044-1053
- 161 Pu S, Liu T, Gao Y. et al. The role of tumor-associated endothelial cells in malignant progression and immune evasion of liver cancer. Int Immunopharmacol 2025; 161: 115013
- 162 Zhou P-Y, Zhou C, Gan W. et al. Single-cell and spatial architecture of primary liver cancer. Commun Biol 2023; 6: 1181
- 163 Xie Z, Huang J, Li Y. et al. Single-cell RNA sequencing revealed potential targets for immunotherapy studies in hepatocellular carcinoma. Sci Rep 2023; 13: 18799
- 164 Wang Y-H, Cheng T-Y, Chen T-Y. et al. Plasmalemmal Vesicle Associated Protein (PLVAP) as a therapeutic target for treatment of hepatocellular carcinoma. BMC Cancer 2014; 14: 815
- 165 Carambia A, Freund B, Schwinge D. et al. TGF-β-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. J Hepatol 2014; 61: 594-599
- 166 Lu Y, Liu Y, Zuo X. et al. CXCL12+ tumor-associated endothelial cells promote immune resistance in hepatocellular carcinoma. J Hepatol 2025; 82: 634-648
- 167 Gui M, Huang S, Li S. et al. Integrative single-cell transcriptomic analyses reveal the cellular ontological and functional heterogeneities of primary and metastatic liver tumors. J Transl Med 2024; 22: 206
- 168 Sas Z, Cendrowicz E, Weinhäuser I. et al. Tumor Microenvironment of Hepatocellular Carcinoma: Challenges and Opportunities for New Treatment Options. Int J Mol Sci 2022; 23: 3778
- 169 Kane K, Edwards D, Chen J. The influence of endothelial metabolic reprogramming on the tumor microenvironment. Oncogene 2025; 44: 51-63
- 170 Hack SP, Zhu AX, Wang Y. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities. Front Immunol 2020; 11: 598877
- 171 Zhu AX, Abbas AR, de Galarreta MR. et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med 2022; 1-13
- 172 Baglieri J, Brenner DA, Kisseleva T. The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. International Journal of Molecular Sciences 2019; 20: 1723
- 173 Zhang DY, Goossens N, Guo J. et al. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut 2016; 65: 1754-1764
- 174 Ying F, Chan MSM, Lee TKW. Cancer-Associated Fibroblasts in Hepatocellular Carcinoma and Cholangiocarcinoma. Cell Mol Gastroenterol Hepatol 2023; 15: 985-999
- 175 Chiavarina B, Ronca R, Otaka Y. et al. Fibroblast-derived prolargin is a tumor suppressor in hepatocellular carcinoma. Oncogene 2022; 41: 1410-1420
- 176 Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep Med 2023; 4: 101170
- 177 Lee B, Lee S-H, Shin K. Crosstalk between fibroblasts and T cells in immune networks. Front Immunol 2022; 13: 1103823
- 178 Lan X, Li W, Zhao K. et al. Revisiting the role of cancer-associated fibroblasts in tumor microenvironment. Front Immunol 2025; 16: 1582532
- 179 Thomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005; 8: 369-380
- 180 Zhu G-Q, Tang Z, Huang R. et al. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov 2023; 9: 25
- 181 Bayo J, Real A, Fiore EJ. et al. IL-8, GRO and MCP-1 produced by hepatocellular carcinoma microenvironment determine the migratory capacity of human bone marrow-derived mesenchymal stromal cells without affecting tumor aggressiveness. Oncotarget 2017; 8: 80235-80248
- 182 Szoor A, Vaidya A, Velasquez MP. et al. T Cell-Activating Mesenchymal Stem Cells as a Biotherapeutic for HCC. Mol Ther Oncolytics 2017; 6: 69-79
- 183 Ohlsson LB, Varas L, Kjellman C. et al. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 2003; 75: 248-255
- 184 Gao W-X, Sun Y-Q, Shi J. et al. Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Res Ther 2017; 8: 48
- 185 Selleri S, Bifsha P, Civini S. et al. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming. Oncotarget 2016; 7: 30193-30210
- 186 Özdemir BC, Pentcheva-Hoang T, Carstens JL. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 2014; 25: 719-734
- 187 Haber PK, Puigvehí M, Castet F. et al. Evidence-Based Management of Hepatocellular Carcinoma: Systematic Review and Meta-analysis of Randomized Controlled Trials (2002–2020). Gastroenterology 2021; 161: 879-898
- 188 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): S3-Leitlinie Diagnostik und Therapie des Hepatozellulären Karzinoms und biliärer Karzinome, Langversion 5.0, 2024, AWMF-Registernummer: 032–053OL. Accessed October 08, 2025 at: https://www.leitlinienprogramm-onkologie.de/leitlinien/hcc-und-biliaere-karzinome/
- 189 Sheng J, Zhang J, Wang L. et al. Topological analysis of hepatocellular carcinoma tumour microenvironment based on imaging mass cytometry reveals cellular neighbourhood regulated reversely by macrophages with different ontogeny. Gut 2022; 71: 1176-1191
- 190 Shu DH, Ho WJ, Kagohara LT. et al. Immunotherapy response induces divergent tertiary lymphoid structure morphologies in hepatocellular carcinoma. Nat Immunol 2024; 25: 2110-2123
- 191 Salié H, Wischer L, D’Alessio A. et al. Spatial single-cell profiling and neighbourhood analysis reveal the determinants of immune architecture connected to checkpoint inhibitor therapy outcome in hepatocellular carcinoma. Gut 2025; 74: 451-466
