Subscribe to RSS
DOI: 10.1055/a-2515-1569
Copper-Catalyzed Unconventional Reactivities of Propargylic Esters
This work was supported by the National Natural Science Foundation of China (Nos. 22071242 and 21871260), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), and the Fujian Natural Science Foundation (No. 2021J01522).

Abstract
Propargyl esters, known for their reactivities in nucleophilic substitution and substitution–annulation reactions, have been extensively studied and summarized in a range of reviews. However, there is a notable lack of comprehensive comment on their unconventional reactivities. This review aims to bridge this gap by showcasing the versatility and potential of propargyl esters in enabling unconventional reaction patterns mediated by copper catalysts. Each reaction type is discussed in detail, with emphasis on the mechanisms and reaction conditions. We hope that this review will inspire the discovery of more new reaction modes of propargyl esters and provide new tools for the synthesis of related complex bioactive compounds.
1 Introduction
2 Reactions of Terminal Propargylic Esters
3 Reactions of Internal Propargylic Esters
4 Conclusion
Publication History
Received: 22 December 2024
Accepted after revision: 12 January 2025
Accepted Manuscript online:
12 January 2025
Article published online:
03 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Miyake Y, Uemura S, Nishibayashi Y. ChemCatChem 2009; 1: 342
- 1b Ljungdahl N, Kann N. Angew. Chem. Int. Ed. 2009; 48: 642
- 1c Detz RJ, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2009; 6263
- 1d Ding C.-H, Hou X.-L. Chem. Rev. 2011; 111: 1914
- 1e Nishibayashi Y. Synthesis 2012; 44: 489
- 1f Bauer EB. Synthesis 2012; 44: 1131
- 1g Adeleke AF, Brown AP. N, Cheng L.-J, Mosleh KA. M, Cordier CJ. Synthesis 2017; 49: 790
- 1h Roy R, Saha S. RSC Adv. 2018; 8: 31129
- 1i Tsuji H, Kawatsura M. Asian J. Org. Chem. 2020; 9: 1924
- 1j Nishibayashi Y. Chem. Lett. 2021; 50: 1282
- 1k Tong F, Hu D, Zhang C, Zhang J.-Q, Ren H. Org. Chem. Front. 2024; 11: 1843
- 2a Hu X.-H, Liu Z.-T, Shao L, Hu X.-P. Synthesis 2015; 47: 913
- 2b Zhang D.-Y, Hu X.-P. Tetrahedron Lett. 2015; 56: 283
- 2c Sakata K, Nishibayashi Y. Catal. Sci. Technol. 2018; 8: 12
- 2d Li T.-R, Wang Y.-N, Xiao W.-J, Lu L.-Q. Tetrahedron Lett. 2018; 59: 1521
- 2e Roh SW, Choi K, Lee C. Chem. Rev. 2019; 119: 4293
- 2f You Y, Zhang Y.-P, Wang Z.-H, Zhao J.-Q, Yin J.-Q, Yuan W.-C. Chem. Commun. 2023; 59: 7483
- 3a Tang X, Woodward S, Krause N. Eur. J. Org. Chem. 2009; 2836
- 3b Deutsch C, Lipshutz BH, Krause N. Org. Lett. 2009; 11: 5010
- 3c Ohmiya H, Yokobori U, Makida Y, Sawamura M. Org. Lett. 2011; 13: 6312
- 3d Guo K, Kleij AW. Org. Lett. 2020; 22: 3942
- 3e Kobayashi Y, Takashima Y, Motoyama Y, Isogawa Y, Katagiri K, Tsuboi A, Ogawa N. Chem. Eur. J. 2021; 27: 3779
- 3f Lu W.-Y, You Y, Li T.-T, Wang Z.-H, Zhao J.-Q, Yuan W.-C. J. Org. Chem. 2021; 86: 6711
- 3g Zhong F, Yue W.-J, Yin X.-H, Zhang H.-M, Yin L. ACS Catal. 2022; 12: 9181
- 3h Li T.-T, Lu W.-Y, Shen L.-W, Wang Z.-H, Zhao J.-Q, You Y, Yuan W.-C. Tetrahedron 2022; 104: 132606
- 3i Jarava-Barrera C, Parra A, Quesada S, Orgaz-Gordillo S, Fernández de la Pradilla R, Viso A, Teresa J, Alonso I, Tortosa M. Adv. Synth. Catal. 2024; 366: 768
- 4 Shiroodi RK, Gevorgyan V. Chem. Soc. Rev. 2013; 42: 4991
- 5 Dai M, Song L, Chen L.-A. Sci. China Chem. 2024; 67: 1384
- 6a Shiroodi RK, Dudnik AS, Gevorgyan V. J. Am. Chem. Soc. 2012; 134: 6928
- 6b Jiang J, Hou C, Zhang S, Luan Z, Zhao C, Ke Z. J. Org. Chem. 2015; 80: 1661
- 7 Imai K, Takayama Y, Murayama H, Ohmiya H, Shimizu Y, Sawamura M. Org. Lett. 2019; 21: 1717
- 8 Yao Q, Liu B, Cao T, Zhu S. Chem. Commun. 2022; 58: 4969
- 9 Li T.-T, You Y, Sun T.-J, Zhang Y.-P, Zhao J.-Q, Wang Z.-H, Yuan W.-C. Org. Lett. 2022; 24: 5120
- 10 Gong F, Meng X, Lan S, Liu J, Yang S, Fang X. ACS Catal. 2022; 12: 12036
- 11 Duan X, Zheng N, Li M, Liu G, Sun X, Wu Q, Song W. Nat. Commun. 2022; 13: 4362
- 12 Xu C, Zhang H, Lan S, Liu J, Yang S, Zhang Q, Fang X. Angew. Chem. Int. Ed. 2023; e202219064
- 13 Dong W, Zhao Z, Gu C.-Z, Liu J.-G, Yang S, Fang X. J. Am. Chem. Soc. 2023; 145: 27539
- 14 Li G, Li Y, Sun P, Huang J, Xu T, Zeng F, Hu X.-P. Org. Lett. 2024; 26: 4443
- 15a Schwier S, Sromek AW, Yap DM. L, Chernyak D, Gevorgyan V. J. Am. Chem. Soc. 2007; 129: 9868
- 15b Sromek AW, Kel’in AV, Gevorgyan V. Angew. Chem. Int. Ed. 2004; 43: 2280
- 16a Guo K, Kleij AW. Angew. Chem. Int. Ed. 2021; 60: 4901
- 16b Pei G, Chen H, Xu W, Chen T, Li J. Org. Chem. Front. 2021; 8: 6950
- 17 Sun Z, Dai M, Ding C, Chen S, Chen L.-A. J. Am. Chem. Soc. 2023; 145: 18115