Subscribe to RSS

DOI: 10.1055/a-2509-7278
Cost-effectiveness analysis of artificial intelligence-aided colonoscopy for adenoma detection and characterization in Spain
Supported by: Medtronic Iberica S.A.
Abstract
Background and study aims
The aim of this study was to assess the cost-effectiveness of an intelligent endoscopy module for computer-assisted detection and characterization (CADe/CADx) compared with standard practice, from a Spanish National Health System perspective.
Methods
A Markov model was designed to estimate total costs, life years gained (LYG), and quality-adjusted life years (QALYs) over a lifetime horizon with annual cycles. A hypothetical cohort of 1,000 patients eligible for colonoscopy (mean age 61.32 years) was distributed between Markov states according to polyp size, location, and histology based on national screening program data. CADe/CADx efficacy was determined based on adenoma miss rates and natural disease evolution was simulated according to annual transition probabilities. Detected polyp management involved polypectomy and histopathology in standard practice, whereas with CADe/CADx leave-in-situ strategy was applied for ≤ 5 mm rectosigmoid non-adenomas and resect-and-discard strategy for the rest of ≤ 5mm polyps. Unit costs (€,2024) included the diagnostic procedure and polyp and colorectal cancer (CRC) management. A 3% annual discount rate was applied to costs and outcomes. Model inputs were validated by an expert panel.
Results
CADe/CADx was more effective (16.37 LYG and 14.32 QALYs) than standard practice (16.33 LYG and 14.27 QALYs) over a lifetime horizon. Total cost per patient was €2,300.76 with CADe/CADx and €2,508.75 with colonoscopy alone. In a hypothetical cohort of 1,000 patients, CADe/CADx avoided 173 polypectomies, 370 histopathologies, and 7 CRC cases. Sensitivity analyses confirmed model robustness.
Conclusions
The results of this analysis suggest that CADe/CADx would result in a dominant strategy versus standard practice in patients undergoing colonoscopy in Spain.
Keywords
Endoscopy Lower GI Tract - Colorectal cancer - Polyps, Adenomas - CRC screening - Endoscopic resection (polypectomy, ESD, EMRc) - Computer-assisted detection (CADe) - Computer-assisted characterization (CADx) - Leave-in-situ - Resect-and-discardPublication History
Received: 01 August 2024
Accepted after revision: 17 December 2024
Accepted Manuscript online:
02 January 2025
Article published online:
14 March 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Marco Bustamante-Balén, Beatriz Merino Rodríguez, Luis Barranco, Julen Monje, María Álvarez, Sofía de Pedro, Itziar Oyagüez, Nancy Van Lent, María Mareque. Cost-effectiveness analysis of artificial intelligence-aided colonoscopy for adenoma detection and characterization in Spain. Endosc Int Open 2025; 13: a25097278.
DOI: 10.1055/a-2509-7278
-
References
-
1
Global Cancer Observatory.
International Agency for Research on Cancer. Cancer Today: Spain. 2021. https://gco.iarc.fr/today/fact-sheets-populations
-
2 Red Española de Registros de Cáncer (REDECAN). Estimaciones de la incidencia del cáncer en España, 2023. 2023. https://redecan.org/storage/documents/02d62122-9adb-4d35-b6d0-551435dbe4ae.pdf
-
3
Ponti A,
Anttila A,
Ronco G.
et al.
Cancer Screening in the European Union (2017). Report on the implementation of the Council Recommendation on cancer screening. 2017. https://health.ec.europa.eu/document/download/911ecf9b-0ae2-4879-93e6-b750420e9dc0_en
-
4 Red de Programa de Cribado de Cáncer. Evaluación programas de cribado de cancer colorectaL-2019. 2019. https://cribadocancer.es/
-
5
Gallastegui E,
Palma-Vasquez C,
Estrada M.
et al.
Inteligencia artificial para la detección y caracterización de lesiones precancerosas colorrectales en la
colonoscopia. Barcelona: Agència de Qualitat i Avaluació Sanitàries de Catalunya; 2023 (Informes de
Evaluación de Tecnologías Sanitarias.
- 6 Zhao S, Wang S, Pan P. et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: A systematic review and meta-analysis. Gastroenterology 2019; 156: 1661-1674 e11
- 7 Rex DK, Helbig CC. High yields of small and flat adenomas with high-definition colonoscopes using either white light or narrow band imaging. Gastroenterology 2007; 133: 42-47
- 8 Gupta N, Bansal A, Rao D. et al. Prevalence of advanced histological features in diminutive and small colon polyps. Gastrointest Endosc 2012; 75: 1022-1030
- 9 Rex DK, Kahi C, O’Brien M. et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc 2011; 73: 419-422
- 10 Vu HT, Sayuk GS, Hollander TG. et al. Resect and discard approach to colon polyps: real-world applicability among academic and community gastroenterologists. Dig Dis Sci 2015; 60: 502-508
- 11 Repici A, Badalamenti M, Maselli R. et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology 2020; 159: 512-520 e7
- 12 Wallace MB, Sharma P, Bhandari P. et al. Impact of Artificial Intelligence on Miss Rate of Colorectal Neoplasia. Gastroenterology 2022; 163: 295-304 e5
- 13 Mori Y, Kudo S, Misawa M. et al. Real-Time use of artificial intelligence in identification of diminutive polyps during colonoscopy: A prospective study. Ann Intern Med 2018; 169: 357
- 14 Hassan C, Balsamo G, Lorenzetti R. et al. Artificial intelligence allows leaving-in-situ colorectal polyps. Clin Gastroenterol Hepatol 2022; 20: 2505-2513 e4
- 15 Areia M, Mori Y, Correale L. et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Dig Health 2022; 4: e436-e444
-
16 Comité Asesor para la Financiación de la prestación Farmacéutica del Sistema Nacional de Salud. Guía de Evaluación Económica de Medicamentos. 2023. https://www.sanidad.gob.es/areas/farmacia/comitesAdscritos/prestacionFarmaceutica/docs/20240227_CAPF_Guia_EE_definitiva.pdf
- 17 Ibarrondo O, Lizeaga G, Martínez-Llorente JM. et al. Health care costs of breast, prostate, colorectal and lung cancer care by clinical stage and cost component. Gaceta Sanitaria 2022; 36: 246-252
-
18 Xunta de Galicia. Dirección Xeral de Saúde Pública. Memoria 2016–2017. https://libraria.xunta.gal/es/direccion-xeral-de-saude-publica-memoria-2016-2017
-
19 Conselleria de Sanitat Universal y Salud Pública. Servicio de cribados poblacionales. Dirección General de Salud Pública y Adicciones. Programa de Prevención de cáncer colorrectal de la Comunitat Valenciana. 2022. https://www.gva.es/es/inicio/atencion_ciudadano/buscadores/departamentos/detalle_departamentos?id_dept=16284
-
20 Consejería de Sanidad. Junta de Castilla y León. Programas de prevención de salud pública. 2021. https://www.saludcastillayleon.es/transparencia/es/transparencia/informacion-datos-publicos/salud-publica/programas-prevencion-salud-publica.ficheros/2189606-Programas%20de%20Prevenci%C3%B3n%20de%20Salud%20P%C3%BAblica%202021.pdf
-
21 Gobierno Vasco. Departamento de Salud. Programa de cribado de cáncer colorrectal. 2019. https://www.osakidetza.euskadi.eus/programa-de-prevencion-del-cancer-colorrectal/webosk00-oskenf/es/
- 22 Mangas-Sanjuan C, Jover R, Cubiella J. et al. Vigilancia tras resección de pólipos de colon y de cáncer colorrectal. Actualización 2018. Gastroenterología y Hepatología 2019; 42: 188-201
- 23 Coretti S, Ruggeri M, Dibidino R. et al. Economic evaluation of colorectal cancer screening programs: Affordability for the health service. J Med Screen 2020; 27: 186-193
- 24 Frazier AL. Cost-effectiveness of screening for colorectal cancer in the general population. JAMA 2000; 284: 1954
- 25 Gilard-Pioc S, Abrahamowicz M, Mahboubi A. et al. Multi-state relative survival modelling of colorectal cancer progression and mortality. Cancer Epidemiol 2015; 39: 447-455
-
26 Instituto Nacional de Estadística (INE). https://www.ine.es/
- 27 Janssen MF, Szende A, Cabases J. et al. Population norms for the EQ-5D-3L: a cross-country analysis of population surveys for 20 countries. Eur J Health Econ 2019; 20: 205-216
-
28 Oblikue Consulting. eSalud – Información económica del sector sanitario.
2023. https://esalud.oblikue.com/
- 29 Loras C, Mayor V, Fernández-Bañares F. et al. Study of the standard direct costs of various techniques of advanced endoscopy. Comparison with surgical alternatives. Digest Liver Dis 2018; 50: 689-697
- 30 Vallejo-Torres L, García-Lorenzo B, Serrano-Aguilar P. Estimating a cost-effectiveness threshold for the Spanish NHS. Health Econ 2018; 27: 746-761
- 31 Sacristán JA. How to assess the value of low-value care. BMC Health Serv Res 2020; 20: 1000
- 32 Gordon IO, Sherman JD, Leapman M. et al. Life cycle greenhouse gas emissions of gastrointestinal biopsies in a surgical pathology laboratory. Am J Clin Pathology 2021; 156: 540-549
- 33 Hassan C, Povero M, Pradelli L. et al. Cost-utility analysis of real-time artificial intelligence-assisted colonoscopy in Italy. Endosc Int Open 2023; 11: E1046-E1055
- 34 Barkun AN, Von Renteln D, Sadri H. Cost-effectiveness of artificial intelligence-aided colonoscopy for adenoma detection in colon cancer screening. J Canadian Assoc Gastroenterology 2023; 6: 97-105
- 35 Vleugels JLA, Hassan C, Senore C. et al. diminutive polyps with advanced histologic features do not increase risk for metachronous advanced colon neoplasia. Gastroenterology 2019; 156: 623-634 e3