Subscribe to RSS
DOI: 10.1055/a-2502-7759
Stereoselective Construction of Glycosides Enabled by Glycosyl/ Glycal Metal Species
The authors are grateful to the National Natural Science Foundation of China (22101250 and 22371247), the Yunnan Fundamental Research Projects (202301AW070005), the Yunnan Revitalization Talent Support Program (XDYC-QNRC-2022-0696), the Project of Innovative Research Team of Yunnan Province (202405AS350010), and the Yunnan University Research Innovation Fund for Graduate Students (KC-24249408) for financial support.

Abstract
Glycosyl/glycal metal functionalization has emerged as an efficient protocol for the construction of glycosides. Benefitting from the rapid development of organometallic chemistry and transition-metal-catalyzed cross-coupling reactions, glycosyl-metal-mediated glycosylation has significantly expanded the space for glycoside synthesis recently. In this short review, we underscore the representative progress in this area, categorizing the advancements by the type of glycosyl/glycal metal species. The reaction mechanism, stereochemical control, synthetic utility, and unmet challenges are also discussed.
1 Introduction
2 Glycosyl/Glycal Lithium-Based Glycosylations
2.1 Preparation of Glycosyl/Glycal Lithium Reagents
2.2 Glycosylation with Glycosyl/Glycal Lithiums
3 Glycosyl/Glycal Stannane-Based Glycosylations
3.1 Preparation of Glycosyl/Glycal Stannane Reagents
3.2 Glycosylation with Glycosyl/Glycal Stannanes
4 Glycosyl/Glycal Boron-Based Glycosylations
4.1 Preparation of Glycosyl/Glycal Boron Compounds
4.2 Glycosylation with Glycosyl/Glycal Boron Compounds
5 Glycosylations Enabled by in situ Formed Glycosyl-Metal Intermediates
5.1 Hydrofunctionalization of Glycals
5.2 Functionalization/Glycosylation of Glycals
6 Conclusion and Outlook
Key words
glycosides - stereoselective glycosylation - glycosyl-metal species - cross-coupling - functionalization - carbohydrate chemistryPublication History
Received: 22 November 2024
Accepted after revision: 15 December 2024
Accepted Manuscript online:
15 December 2024
Article published online:
23 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Essentials of Glycobiology, 3rd ed. Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH. Cold Spring Harbor Laboratory Press; New York: 2017
- 1b Shivatare SS, Shivatare VS, Wong C.-H. Chem. Rev. 2022; 122: 15603
- 2a Štambaský J, Hocek M, Kočovský P. Chem. Rev. 2009; 109: 6729
- 2b Bokor É, Kun S, Goyard D, Tóth M, Praly J.-P, Vidal S, Somsák L. Chem. Rev. 2017; 117: 1687
- 3a Chao EC, Henry RR. Nat. Rev. Drug Discovery 2010; 9: 551
- 3b Mannem RR, Thoti N, Aidhen IS. Bioactive C-Glycosides Inspired from Natural Products Towards Therapeutics. In Carbohydrates in Drug Discovery and Development: Synthesis and Application. Tiwari VK. Elsevier; Amsterdam: 2020: 97
- 3c Cao X, Du X, Jiao H, An Q, Chen R, Fang P, Wang J, Yu B. Acta Pharm. Sin. B 2022; 12: 3783
- 4a Bennett CS. Selective Glycosylations: Synthetic Methods and Catalysts. Wiley-VCH; Weinheim: 2017
- 4b Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
- 4c Bennett CS, Galan MC. Chem. Rev. 2018; 118: 7931
- 4d Dimakos V, Taylor MS. Chem. Rev. 2018; 118: 11457
- 4e Kitamura K, Ando Y, Matsumoto T, Suzuki K. Chem. Rev. 2018; 118: 1495
- 4f Liao H, Ma J, Yao H, Liu X.-W. Org. Biomol. Chem. 2018; 16: 1791
- 4g Nielsen MM, Pedersen CM. Chem. Rev. 2018; 118: 8285
- 4h Li Q, Levi SM, Wagen CC, Wendlandt AE, Jacobsen EN. Nature 2022; 608: 74
- 4i Parida SP, Das T, Ahemad MA, Pati T, Mohapatra S, Nayak S. Carbohydr. Res. 2023; 530: 108856
- 4j Shang W, Shi R, Niu D. Chin. J. Chem. 2023; 41: 2217
- 4k Das R, Das M, Mukherjee D, Kundu T. Synthesis 2024; 56: 1070
- 4l Xiong T, Xie R, Huang C, Lan X, Huang N, Yao H. J. Carbohydr. Chem. 2021; 40: 401
- 4m Cai L, Meng L, Zeng J, Wan Q. Org. Chem. Front. 2021; 8: 3150
- 4n Crawford CJ, Seeberger PH. Chem. Soc. Rev. 2023; 52: 7773
- 4o Li J, Jiang X. Synlett 2024; 25: in press
- 5a Chen A, Yang B, Zhou Z, Zhu F. Chem. Catal. 2022; 2: 3430
- 5b Jiang Y, Zhang Y, Lee BC, Koh MJ. Angew. Chem. Int. Ed. 2023; 62: e202305138
- 5c Shang W, Niu D. Acc. Chem. Res. 2023; 56: 2473
- 6a Dumoulin A, Matsui JK, Gutiérrez-Bonet Á, Molander GA. Angew. Chem. Int. Ed. 2018; 57: 6614
- 6b Wei Y, Ben-Zvi B, Diao T. Angew. Chem. Int. Ed. 2021; 60: 9433
- 7a Shang W, Su S.-N, Shi R, Mou Z.-D, Yu G.-Q, Zhang X, Niu D. Angew. Chem. Int. Ed. 2021; 60: 385
- 7b Xie D, Wang Y, Zhang X, Fu Z, Niu D. Angew. Chem. Int. Ed. 2022; 61: e202204922
- 8a Wan L.-Q, Zhang X, Zou Y, Shi R, Cao J.-G, Xu S.-Y, Deng L.-F, Zhou L, Gong Y, Shu X, Lee GY, Ren H, Dai L, Qi S, Houk KN, Niu D. J. Am. Chem. Soc. 2021; 143: 11919
- 8b Wang Q, Lee BC, Tan TJ, Jiang Y, Ser WH, Koh MJ. Nat. Synth. 2022; 1: 967
- 8c Wang Q, Lee BC, Song N, Koh MJ. Angew. Chem. Int. Ed. 2023; 62: e202301081
- 9a Lemaire S, Houpis IN, Xiao T, Li J, Digard E, Gozlan C, Liu R, Gavryushin A, Diène C, Wang Y, Farina V, Knochel P. Org. Lett. 2012; 14: 1480
- 9b Gong H, Sinisi R, Gagné MR. J. Am. Chem. Soc. 2007; 129: 1908
- 9c Nicolas L, Angibaud P, Stansfield I, Bonnet P, Meerpoel L, Reymond S, Cossy J. Angew. Chem. Int. Ed. 2012; 51: 11101
- 9d Yu X, Dai Y, Yang T, Gagné MR, Gong H. Tetrahedron 2011; 67: 144
- 9e Adak L, Kawamura S, Toma G, Takenaka T, Isozaki K, Takaya H, Orita A, Li HC, Shing TK. M, Nakamura M. J. Am. Chem. Soc. 2017; 139: 10693
- 10a Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
- 10b Choi J, Fu GC. Science 2017; 356: eaaf7230
- 10c Wu X, Ren J, Shao Z, Yang X, Qian D. ACS Catal. 2021; 11: 6560
- 11 Zeng J, Ma J, Xiang S, Cai S, Liu X.-W. Angew. Chem. Int. Ed. 2013; 52: 5134
- 12 Lancelin J.-M, Morin-Allory L, Sinaÿ P. J. Chem. Soc., Chem. Commun. 1984; 355
- 13 Cohen T, Matz JR. J. Am. Chem. Soc. 1980; 102: 6900
- 14 Beau J.-M, Sinaÿ P. Tetrahedron Lett. 1985; 26: 6185
- 15 Beau J.-M, Sinaÿ P. Tetrahedron Lett. 1985; 26: 6189
- 16 Nicolaou KC, Hwang CK, Duggan ME. J. Chem. Soc., Chem. Commun. 1986; 925
- 17 Hanessian S, Martin M, Desai RC. J. Chem. Soc., Chem. Commun. 1986; 926
- 18 Lesimple P, Beau J.-M, Jaurand G, Sinaÿ P. Tetrahedron Lett. 1986; 27: 6201
- 19 Baryal KN, Zhu D, Li X, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 8012
- 20 Somsák L. Chem. Rev. 2001; 101: 81
- 21 Lesimple P, Beau J.-M. Bioorg. Med. Chem. 1994; 2: 1319
- 22a Wittmann V, Kessler H. Angew. Chem. Int. Ed. 1993; 32: 1091
- 22b Beau J.-M, Gallagher T. Nucleophilic C-Glycosyl Donors for C-Glycoside Synthesis. In Glycoscience: Synthesis of Substrate Analogs and Mimetics. Driguez H, Thiem J. Springer Verlag; Berlin/Heidelberg: 1998
- 22c Hoffmann M, Kessler H. Tetrahedron Lett. 1994; 35: 6067
- 23 Choutka J, Pohl R, Parkan K. ACS Omega 2018; 3: 7875
- 24 Choutka J, Kratochvíl M, Císařová I, Pohl R, Kaminský J, Parkan K. Org. Biomol. Chem. 2022; 20: 7613
- 25 Acharya PP, Baryal KN, Reno CE, Zhu J. Carbohydr. Res. 2017; 448: 103
- 26 Baryal KN, Zhu J. Org. Lett. 2015; 17: 4530
- 27 Meng S, Li X, Zhu J. Tetrahedron 2021; 88: 132140
- 28a Hoang KM, Lees NR, Herzon SB. J. Am. Chem. Soc. 2019; 141: 8098
- 28b Hoang KM, Zheng X, Herzon SB. J. Org. Chem. 2022; 87: 10768
- 28c Hoang KM, Lees NR, Herzon SB. J. Am. Chem. Soc. 2021; 143: 2777
- 29a Lesimple P, Beau J.-M, Sinaÿ P. Carbohydr. Res. 1987; 171: 289
- 29b Frey O, Hoffmann M, Wittmann V, Kessler H, Uhlmann P, Vasella A. Helv. Chim. Acta 1994; 77: 2060
- 29c Burkhart F, Hoffmann M, Kessler H. Tetrahedron Lett. 1998; 39: 7699
- 30a Zhu F, Rourke MJ, Yang T, Rodriguez J, Walczak MA. J. Am. Chem. Soc. 2016; 138: 12049
- 30b Zhu F, Rodriguez J, Yang T, Kevlishvili I, Miller E, Yi D, O’Neill S, Rourke MJ, Liu P, Walczak MA. J. Am. Chem. Soc. 2017; 139: 17908
- 30c Cheng G, Yang B, Han Y, Lin W, Tao S, Nian Y, Li Y, Walczak MA, Zhu F. Precis. Chem. 2024; 2: 587
- 31a Bayer M, Bächle F, Ziegler T. J. Carbohydr. Chem. 2018; 37: 347
- 31b Shinozuka T. ACS Omega 2020; 5: 33196
- 31c Shinozuka T. ACS Omega 2021; 6: 8447
- 32a Hoffmann M, Kessler H. Tetrahedron Lett. 1997; 38: 1903
- 32b Hoffmann M, Burkhart F, Hessler G, Kessler H. Helv. Chim. Acta 1996; 79: 1519
- 33a Friesen RW, Sturino CF. J. Org. Chem. 1990; 55: 2572
- 33b Dubois E, Beau J.-M. J. Chem. Soc., Chem. Commun. 1990; 1191
- 33c Dubois E, Beau J.-M. Carbohydr. Res. 1992; 228: 103
- 34 Reddy Dubbaka S, Steunenberg P, Vogel P. Synlett 2004; 1235
- 35a Friesen RW, Sturino CF. J. Org. Chem. 1990; 55: 5808
- 35b Dubois E, Beau J.-M. Tetrahedron Lett. 1990; 31: 5165
- 36 Hartung J, Wright BJ. D, Danishefsky SJ. Chem. Eur. J. 2014; 20: 8731
- 37 Khatri HR, Nguyen H, Dunaway JK, Zhu J. Chem. Eur. J. 2015; 21: 13553
- 38 Bayer M, Stocker S, Maichle-Mössmer C, Ziegler T. Eur. J. Org. Chem. 2020; 4347
- 39 Koester DC, Kriemen E, Werz DB. Angew. Chem. Int. Ed. 2013; 52: 2985
- 40a Ye J, Bhatt RK, Falck JR. Tetrahedron Lett. 1993; 34: 8007
- 40b Belosludtsev YY, Bhatt RK, Falck JR. Tetrahedron Lett. 1995; 36: 5881
- 41a Yi D, Zhu F, Walczak MA. Org. Lett. 2018; 20: 1936
- 41b Zhu F, Yang TY, Walczak MA. Synlett 2017; 28: 1510
- 42 Yi D, Zhu F, Walczak MA. Org. Lett. 2018; 20: 4627
- 43 Zhu F, Rodriguez J, O’Neill S, Walczak MA. ACS Cent. Sci. 2018; 4: 1652
- 44a Zhu F, Miller E, Zhang S.-q, Yi D, O’Neill S, Hong X, Walczak MA. J. Am. Chem. Soc. 2018; 140: 18140
- 44b Zhu F, O’Neill S, Rodriguez J, Walczak MA. Angew. Chem. Int. Ed. 2018; 57: 7091
- 45 Zhu F, Zhang S.-q, Chen Z, Rui J, Hong X, Walczak MA. J. Am. Chem. Soc. 2020; 142: 11102
- 46a Vasella A, Wenger W, Rajamannar T. Chem. Commun. 1999; 2215
- 46b Wenger W, Vasella A. Helv. Chim. Acta 2000; 83: 1542
- 47 Zhu Q, Tian X, He G. Chem. Catal. 2024; 4: 100946
- 48 Nomura S, Kawanishi E, Ueta K. WO2005012326, 2005
- 49 Sakamaki S, Kawanishi E, Nomura S, Ishikawa T. Tetrahedron 2012; 68: 5744
- 50 Parkan K, Pohl R, Kotora M. Chem. Eur. J. 2014; 20: 4414
- 51 Zhou H, Danger DP, Dock ST, Hawley L, Roller SG, Smith CD, Handlon AL. ACS Med. Chem. Lett. 2010; 1: 19
- 52 Kikuchi T, Takagi J, Isou H, Ishiyama T, Miyaura N. Chem. Asian J. 2008; 3: 2082
- 53 Takeda D, Yoritate M, Yasutomi H, Chiba S, Moriyama T, Yokoo A, Usui K, Hirai G. Org. Lett. 2021; 23: 1940
- 54 Chen A, Han Y, Wu R, Yang B, Zhu L, Zhu F. Nat. Commun. 2024; 15: 5228
- 55 Miller EM, Walczak MA. Org. Lett. 2021; 23: 4289
- 56 Kurahayashi K, Hanaya K, Sugai T, Hirai G, Higashibayashi S. Chem. Eur. J. 2023; 29: e202203376
- 57 Zhao W.-C, Li R.-P, Ma C, Liao Q.-Y, Wang M, He Z.-T. J. Am. Chem. Soc. 2022; 144: 2460
- 58 Wu X, Li S, Chen L, Ma S, Ma B, Song L, Qian D. J. Am. Chem. Soc. 2024; 146: 22413
- 59 Lyu M.-Y, Jacobo SA, Brown MK. J. Am. Chem. Soc. 2024; 146: 18866
- 60 Shen Z, Yu Y, Wu D, Wei Z, Kong W, Li Y, Yin G. Nat. Commun. 2024; 15: 10167
- 61 Oroszova B, Choutka J, Pohl R, Parkan K. Chem. Eur. J. 2015; 21: 7043
- 62 Sakamaki S, Kawanishi E, Koga Y, Yamamoto Y, Kuriyama C, Matsushita Y, Ueta K, Nomura S. Chem. Pharm. Bull. 2013; 61: 1037
- 63 Wang S, Chen K, Guo F, Zhu W, Liu C, Dong H, Yu J.-Q, Lei X. ACS Cent. Sci. 2023; 9: 1129
- 64 Yasutomi H, Takeda D, Yoritate M, Higashibayashi S, Sugai T, Hirai G. Synlett 2023; 34: 347
- 65a Liu C, Kui X, Lu Q, Liu H, Qian D. Chem. Catal. 2024; 4: 100798
- 65b Kusunuru AK, Jaladanki CK, Tatina MB, Bharatam PV, Mukherjee D. Org. Lett. 2015; 17: 3742
- 65c Sakamoto K, Nagai M, Ebe Y, Yorimitsu H, Nishimura T. ACS Catal. 2019; 9: 1347
- 66 Liu B, Liu D, Rong X, Lu X, Fu Y, Liu Q. Angew. Chem. Int. Ed. 2023; 62: e202218544
- 67 Zeng M, Yu C, Wang Y, Wang J, Wang J, Liu H. Angew. Chem. Int. Ed. 2023; 62: e202300424
- 68 Shen M, Niu C, Wang X, Huang J.-B, Zhao Z, Ni S.-F, Rong Z.-Q. JACS Au 2024; 4: 2312
- 69 Shi H, Yin G, Lu X, Li Y. Chin. Chem. Lett. 2024; 35: 109674
- 70a Zhao G, Yao W, Kevlishvili I, Mauro JN, Liu P, Ngai M.-Y. J. Am. Chem. Soc. 2021; 143: 8590
- 70b Zhao G, Yao W, Mauro JN, Ngai M.-Y. J. Am. Chem. Soc. 2021; 143: 1728
- 70c Yao W, Zhao G, Wu Y, Zhou L, Mukherjee U, Liu P, Ngai M.-Y. J. Am. Chem. Soc. 2022; 144: 3353
- 70d Wang G, Ho CC, Zhou Z, Hao Y.-J, Lv J, Jin J, Jin Z, Chi YR. J. Am. Chem. Soc. 2024; 146: 824