Synlett 2025; 36(08): 963-969 DOI: 10.1055/a-2456-9333
BMIDA-Directed Catalytic Asymmetric Transfer Hydrogenation for Enantioselective Access to α-Boryl Alcohols
Shuang Yang
,
Xinqiang Fang∗
This work was supported by the National Natural Science Foundation of China (No. 22071242 and 21871260), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), the Natural Science Foundation of Fujian Province (No. 2021J01522), and the Self-deployment Project Research Program of Haixi Institutes, Chinese Academy of Sciences (CXZX-2022-GH03).
Abstract
The quest for general and highly efficient and enantioselective catalytic route to chiral alcohols remains a formidable challenge in asymmetric synthesis. Here, we highlight our recent work of asymmetric transfer hydrogenation (ATH) of N -methyliminodiacetyl (MIDA) acylboronates, showcasing a versatile platform for the efficient synthesis of enantiomerically enriched secondary alcohols. Acyl-MIDA-boronates harboring diverse (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents can be hydrogenated, yielding various α-borylated alcohols with high ee values. Crucially, the boron moiety can be easily transformed into other groups, allowing access to previously unattainable carbinols adorned with two structurally similar substituents. The enantioselectivity-directing role of BMIDA is elucidated by computational analyses, which stems from the CH–O electrostatic attraction between the η6 -arene-CH of the catalyst and the σ-bonded oxygen atoms within BMIDA. This work represents the first asymmetric transformation on acylboronates and expands the domain of asymmetric transfer hydrogenation.
Key words
asymmetric transfer hydrogenation -
BMIDA -
acylboronate -
dicarbonyl boronate -
α-boryl alcohol
Publication History
Received: 23 September 2024
Accepted: 29 October 2024
Accepted Manuscript online: 29 October 2024
Article published online: 05 December 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
References
1
Tan M,
Peters BB. C,
Andersson PG,
Zhou T.
Org. Chem. Front. 2024; 11: 2934
2
Nie Y,
Yuan Q,
Zhang W.
Chem. Rec. 2023; 23: e202300133
3
Chu Y,
Han Z,
Ding K.
Chin. J. Org. Chem. 2023; 43: 1934
4
Cabre A,
Verdaguer X,
Riera A.
Chem. Rev. 2022; 122: 269
5
Parker PD,
Hou X,
Dong VM.
J. Am. Chem. Soc. 2021; 143: 6724
6
Stoffels MA,
Klauck FJ. R,
Hamadi T,
Glorius F,
Leker J.
Adv. Synth. Catal. 2020; 362: 1258
7
Zhao Q,
Chen C,
Wen J,
Dong X.-Q,
Zhang X.
Acc. Chem. Res. 2020; 53: 1905
8
Agbossou-Niedercorn F,
Michon C.
Coord. Chem. Rev. 2020; 425: 213523
9
Xie X,
Lu B,
Li W,
Zhang Z.
Coord. Chem. Rev. 2018; 355: 39
10
Margarita C,
Andersson PG.
J. Am. Chem. Soc. 2017; 139: 1346
11
Zhang Z,
Butt NA,
Zhang W.
Chem. Rev. 2016; 116: 14769
12
Xie J.-H,
Bao D.-H,
Zhou Q.-L.
Synthesis 2015; 47: 460
13
Ager DJ,
de Vries AH. M,
de Vries JG.
Chem. Soc. Rev. 2012; 41: 3340
14
Noyori R.
Adv. Synth. Catal. 2003; 345: 15
15
Yang S,
Fang X.
Tetrahedron 2023; 145: 133609
16
Yang H,
Yu H,
Stolarzewicz IA,
Tang W.
Chem. Rev. 2023; 123: 9397
17
Zhang Y,
Xu L,
Lu Y,
Zhang Z.
Chin. J. Org. Chem. 2022; 42: 3221
18
Molina Betancourt R,
Echeverria P.-G,
Ayad T,
Phansavath P,
Ratovelomanana-Vidal V.
Synthesis 2021; 53: 30
19
Seo CS. G,
Morris RH.
Organometallics 2019; 38: 47
20
Dub PA,
Gordon JC.
Nat. Rev. Chem. 2018; 2: 396
21
Bartlett SL,
Johnson JS.
Acc. Chem. Res. 2017; 50: 2284
22
Wu X,
Wang C,
Xiao J.
Chem. Rec. 2016; 16: 2772
23
Štefane B,
Požgan F.
Top. Curr. Chem. 2016; 374: 18
24
Echeverria P.-G,
Ayad T,
Phansavath P,
Ratovelomanana-Vidal V.
Synthesis 2016; 48: 2523
25
Foubelo F,
Najera C,
Yus M.
Tetrahedron: Asymmetry 2015; 26: 769
26
Cotarca L,
Verzini M,
Volpicelli R.
Chim. Oggi 2014; 32: 36
27
Štefane B,
Požgan F.
Catal. Rev. 2014; 56: 82
28
Ager DJ,
de Vries AH. M,
de Vries JG.
Chem. Soc. Rev. 2012; 41: 3340
29
Ikariya T.
Top. Organomet. Chem. 2011; 37: 31
30
Ikariya T,
Blacker AJ.
Acc. Chem. Res. 2007; 40: 1300
31
Gladiali S,
Alberico E.
Chem. Soc. Rev. 2006; 35: 226
32
Noyori R,
Hashiguchi S.
Acc. Chem. Res. 1997; 30: 97
33
Cotman AE.
Chem. Eur. J. 2021; 27: 39
34
Nedden HG,
Zanotti-Gerosa A,
Wills M.
Chem. Rec. 2016; 16: 2619
35
Sterle M,
Huš M,
Lozinšek M,
Zega A,
Cotman AE.
ACS Catal. 2023; 13: 6242
36
Cotman AE,
Dub PA,
Sterle M,
Lozinšek M,
Dernovšek J,
Zajek Ž,
Zega A,
Tomašič T,
Cahard D.
ACS Org. Inorg. Au 2022; 2: 396
37
Cotman AE,
Lozinšek M,
Wang B,
Stephan M,
Mohar B.
Org. Lett. 2019; 21: 3644
38
Wang L,
Xiao R,
Song J,
Zheng L.-S,
Lang Q,
Chen G.-Q,
Zhang X.
Chin. J. Chem. 2024; 42: 43
39
Wang F,
Zhang Z,
Chen Y,
Ratovelomanana-Vidal V,
Yu P,
Chen G.-Q,
Zhang X.
Nat. Commun. 2022; 13: 7794
40
Xie Q.-X,
Liu L.-X,
Zhu Z.-H,
Yu C.-B,
Zhou Y.-G.
J. Org. Chem. 2022; 87: 7521
41
Betancourt RM,
Phansavath P,
Ratovelomanana-Vidal V.
J. Org. Chem. 2021; 86: 12054
42
Touge T,
Nara H,
Kida M,
Matsumura K,
Kayaki Y.
Org. Lett. 2021; 23: 3070
43
Betancourt RM,
Phansavath P,
Ratovelomanana-Vidal V.
Org. Lett. 2021; 23: 1621
44
Wang F,
Yang T,
Wu T,
Zheng L.-S,
Yin C,
Shi Y,
Ye X.-Y,
Chen G.-Q,
Zhang X.
J. Am. Chem. Soc. 2021; 143: 2477
45
Ding Y.-X,
Zhu Z.-H,
Wang H,
Yu C.-B,
Zhou Y.-G.
Sci. China Chem. 2021; 64: 232
46
Vyas VK,
Clarkson GJ,
Wills M.
Angew. Chem. Int. Ed. 2020; 59: 14265
47
Gediya SK,
Clarkson GJ,
Wills M.
J. Org. Chem. 2020; 85: 11309
48
Ciesielski P,
Metz P.
Nat. Commun. 2020; 11: 3091
49
He B,
Phansavath P,
Ratovelomanana-Vidal V.
Org. Lett. 2019; 21: 3276
50
Dub PA,
Matsunami A,
Kuwata S,
Kayaki Y.
J. Am. Chem. Soc. 2019; 141: 2661
51
Chen F,
He D,
Chen L,
Chang X,
Wang DZ,
Xu C,
Xing X.
ACS Catal. 2019; 9: 5562
52
Cotman AE,
Cahard D,
Mohar B.
Angew. Chem. Int. Ed. 2016; 55: 5294
53
Touge T,
Sakaguchi K,
Tamaki N,
Nara H,
Yokozawa T,
Matsumura K,
Kayaki Y.
J. Am. Chem. Soc. 2019; 141: 16354
54
Corbett MT,
Johnson JS.
J. Am. Chem. Soc. 2013; 135: 594
55
Steward KM,
Gentry EC,
Johnson JS.
J. Am. Chem. Soc. 2012; 134: 7329
56
Steward KM,
Corbett MT,
Goodman CG,
Johnson JS.
J. Am. Chem. Soc. 2012; 134: 20197
57
Zheng Y,
Clarkson GJ,
Wills M.
Org. Lett. 2020; 22: 3717
58
Soni R,
Jolley KE,
Gosiewska S,
Clarkson GJ,
Fang Z,
Hall TH,
Treloar BN,
Knighton RC,
Wills M.
Organometallics 2018; 37: 48
59
Vyas VK,
Knighton RC,
Bhanage BM,
Wills M.
Org. Lett. 2018; 20: 975
60
Forshaw S,
Matthews AJ,
Brown TJ,
Diorazio LJ,
Williams L,
Wills M.
Org. Lett. 2017; 19: 2789
61
Zheng L,
Llopis Q,
Echeverria P.-G,
Ferard C,
Guillamot G,
Phansavath P,
Ratovelomanana-Vidal V.
J. Org. Chem. 2017; 82: 5607
62
Demidoff FC,
Caleffi GS,
Figueiredo M,
Costa PR. R. R.
J. Org. Chem. 2022; 87: 14208
63
Hall TH,
Adams H,
Vyas VK,
Chu KL. M,
Wills M.
Tetrahedron 2021; 77: 131771
64
Caleffi GS,
de O C Brum J,
Costa AT,
Domingos JL. O,
Costa PR. R.
J. Org. Chem. 2021; 86: 4849
65
Son S.-M,
Lee H.-K.
J. Org. Chem. 2014; 79: 2666
66
Jolley KE,
Zanotti-Gerosa A,
Hancock F,
Dyke A,
Grainger DM,
Medlock JA,
Nedden HG,
Le Paih JJ. M,
Roseblade SJ,
Seger A,
Sivakumar V,
Prokes I,
Morris DJ,
Wills M.
Adv. Synth. Catal. 2012; 354: 2545
67
Meyer N,
Lough AJ,
Morris RH.
Chem. Eur. J. 2009; 15: 5605
68
Sui-Seng C,
Freutel F,
Lough AJ,
Morris RH.
Angew. Chem. Int. Ed. 2008; 47: 940
69
Peach P,
Cross DJ,
Kenny JA,
Mann I,
Houson I,
Campbell L,
Walsgrove T,
Wills M.
Tetrahedron 2006; 62: 1864
70
Cheung FK. K,
Hayes AM,
Hannedouche J,
Yim AS. Y,
Wills M.
J. Org. Chem. 2005; 70: 3188
71
Xue D,
Chen Y.-C,
Cui X,
Wang Q.-W,
Zhu J,
Deng J.-G.
J. Org. Chem. 2005; 70: 3584
72
Hannedouche J,
Kenny JA,
Walsgrove T,
Wills M.
Synlett 2002; 263
73
Touge T,
Nara H,
Fujiwhara M,
Kayaki Y,
Ikariya T.
J. Am. Chem. Soc. 2016; 138: 10084
74
Zheng Y,
Martinez-Acosta JA,
Khimji M,
Barbosa LC. A,
Clarkson GJ,
Wills M.
ChemCatChem 2021; 13: 4384
75
Qian J,
Liu L.-C,
Chen Z.-H,
Liu Y,
Li Y,
Li Q,
Wang H.
Sci. China Chem. 2024; 67: 568
76
Qiao H,
Michalland J,
Huang Q,
Zard SZ.
Chem. Eur. J. 2023; 29: e202302235
77
Tung P,
Schuhmacher A,
Schilling PE,
Bode JW,
Mankad NP.
Angew. Chem. Int. Ed. 2022; 67: e202114513
78
Deng X,
Zhou G,
Han X,
Ullah K,
Srinivasan R.
Org. Lett. 2021; 23: 1886
79
Trofimova A,
Holownia A,
Tien C.-H,
Širvinskas MJ,
Yudin AK.
Org. Lett. 2021; 23: 3294
80
Lai S,
Takaesu N,
Lin WX,
Perrin DM.
Tetrahedron Lett. 2021; 74: 153147
81
Lin S,
Wang L,
Sharma A.
Chem. Sci. 2021; 12: 7924
82
Lee CF,
Tien C.-H,
Adachi S,
Yudin AK.
Org. Synth. 2020; 97: 157
83
Ivon YM,
Mazurenko IV,
Kuchkovska YO,
Voitenko ZV,
Grygorenko OO.
Angew. Chem. Int. Ed. 2020; 59: 18016
84
Tan D.-H,
Tan D.-H,
Cai Y.-H,
Zeng Y.-F,
Lv W.-X,
Yang L,
Li Q.
Angew. Chem. Int. Ed. 2019; 58: 13784
85
Lee CF,
Diaz DB,
Holownia A,
Kaldas SJ,
Liew SK,
Garrett GE,
Dudding T,
Yudin AK.
Nat. Chem. 2018; 10: 1062
86
Lee CF,
Holownia A,
Bennett JM,
Elkins JM,
St Denis JD,
Adachi S,
Yudin AK.
Angew. Chem. Int. Ed. 2017; 56: 6264
87
Taguchi J,
Ikeda T,
Takahashi R,
Sasaki I,
Ogasawara Y,
Dairi T,
Kato N,
Yamamoto Y,
Bode JW,
Ito H.
Angew. Chem. Int. Ed. 2017; 56: 13847
88
Lepage ML,
Lai S,
Peressin NL,
Hadjerci R,
Patrick BO,
Perrin D.
Angew. Chem. Int. Ed. 2017; 56: 15257
89
Adachi S,
Liew SK,
Lee CF,
Lough A,
He Z,
St Denis JD,
Poda G,
Yudin AK.
Org. Lett. 2015; 17: 5594
90
Noda H,
Bode JW.
Chem. Sci. 2014; 5: 4328
91
He Z,
Trinchera P,
Adachi S,
St Denis JD,
Yudin AK.
Angew. Chem. Int. Ed. 2012; 51: 11092
92
Molander GA,
Wisniewski SR.
J. Am. Chem. Soc. 2012; 134: 16856
93
Carmès L,
Carreaux F,
Carboni B.
J. Org. Chem. 2000; 65: 5403
94
Kubota K,
Yamamoto E,
Ito H.
J. Am. Chem. Soc. 2015; 137: 420
95
Vyas VK,
Clarkson GJ,
Wills M.
Org. Lett. 2021; 23: 3179
96
Yin L,
Jia X,
Li X,
Chan AS. C.
Tetrahedron: Asymmetry 2009; 20: 2033
97
Krajnc A,
Brem J,
Hinchliffe P,
Calvopina K,
Panduwawala T,
Lang PA,
Kamps JJ. A. G,
Tyrell JM,
Widlake E,
Saward BG,
Walsh TR,
Spencer J,
Schofield CJ.
J. Med. Chem. 2019; 62: 8544