Subscribe to RSS
DOI: 10.1055/a-2446-3207
Gold-Catalyzed Cope Rearrangements
Generous financial support by the Council of Scientific and Industrial Research (CSIR), New Delhi (File No. 02/0472/23/EMR-II) is gratefully acknowledged. We also would like to thank Science and Engineering Research Board (SERB), New Delhi (CRG/2022/000195, SCP/2022/000063, and JCB/2022/000052) for providing funds to work on related projects. B. P. thanks IISER Bhopal for fellowship.
Abstract
Over decades, Cope rearrangements have attracted significant research interest in the field of synthetic organic chemistry relying on their ability to undergo stereoselective structural reorganization. Despite substantial progress, the development of this field remained confined to the use of parent 1,5-hexadienes. Against the backdrop of classical Cope reaction, we report the utilization of unconventional 1,6-heptadienes to develop the arylative Cope rearrangement by harnessing the interplay between the π-activation and cross-coupling reactivity mode of gold complexes. Several mechanistic investigations such as 31P NMR study, HRMS analysis, cross-over experiment, control experiments were performed to support the proposed cyclization-induced [3,3]-rearrangement mechanism in arylative Cope reaction.
1 Gold-Catalyzed Cope Rearrangements
2 Gold-Catalyzed Arylative Cope Rearrangement
3 Conclusion
Publication History
Received: 09 August 2024
Accepted after revision: 21 October 2024
Accepted Manuscript online:
21 October 2024
Article published online:
06 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Cope AC, Hardy EM. J. Am. Chem. Soc. 1940; 62: 441
- 2a Rearrangements in Natural Product Synthesis. In Modern Tools for the Synthesis of Complex Bioactive Molecules. Marco-Contelles J, Soriano E. John Wiley & Sons; Hoboken: 2012. Selected reviews
- 2b Pindur U, Schneider GH. Chem. Soc. Rev. 1994; 23: 409
- 2c Nowicki J. Molecules 2000; 5: 1033
- 2d Ilardi EA, Stivala CE, Zakarian A. Chem. Soc. Rev. 2009; 38: 3133
- 2e Poulin J, Grisé-Bard CM, Barriault L. Chem. Soc. Rev. 2009; 38: 3092
- 2f Davies HM. L, Denton JR. Chem. Soc. Rev. 2009; 38: 3061
- 2g Tang P, Qin Y. Synthesis 2012; 44: 2969
- 2h Davies HM. L, Lian Y. Acc. Chem. Res. 2012; 45: 923
- 2i Jones AC, May AJ, Sarpong R, Stoltz BM. Angew. Chem. Int. Ed. 2014; 53: 2556
- 3a Overman LE. Angew. Chem., Int. Ed. Engl. 1984; 23: 579
- 3b Lutz RP. Chem. Rev. 1984; 84: 205
- 3c Lee H, Kim KT, Kim M, Kim C. Catalysts 2022; 12: 227
- 4a Sherry BD, Toste FD. J. Am. Chem. Soc. 2004; 126: 15978
- 4b Istrate FM, Gagosz F. Beilstein J. Org. Chem. 2011; 7: 878
- 4c Vidhani DV, Cran JW, Krafft ME, Manoharan M, Alabugin IV. J. Org. Chem. 2013; 78: 2059
- 4d Wu H, Zi W, Li G, Lu H, Toste FD. Angew. Chem. Int. Ed. 2015; 54: 8529
- 4e Peruzzi MT, Lee SJ, Gagné MR. Org. Lett. 2017; 19: 6256
- 4f Liu J, Yang Y, Shi W, Yu Z. Angew. Chem. Int. Ed. 2023; 62: e202217654
- 5 Kim H, Jang J, Shin S. J. Am. Chem. Soc. 2020; 142: 20788
- 6a Tsuda M, Morita T, Fukuhara S, Nakamura H. Org. Biomol. Chem. 2021; 19: 1358
- 6b Tsuda M, Morita T, Nakamura H. Chem. Commun. 2022; 58: 1942
- 7a Gagosz F. Org. Lett. 2005; 7: 4129
- 7b Grisé CM, Rodrigue EM, Barriault L. Tetrahedron 2008; 64: 797
- 7c Bugoni S, Merlini V, Porta A, Gaillard S, Zanoni G, Nolan SP, Vidari G. Chem. Eur. J. 2015; 21: 14068
- 8a Gobé V, Dousset M, Retailleau P, Gandon V, Guinchard X. Adv. Synth. Catal. 2016; 358: 3960
- 8b Sakai T, Okumura C, Futamura M, Noda N, Nagae A, Kitamoto C, Kamiya M, Mori Y. Org. Lett. 2021; 23: 4391
- 9a Bae HJ, Baskar B, An SE, Cheong JY, Thangadurai DT, Hwang I, Rhee YH. Angew. Chem. Int. Ed. 2008; 47: 2263
- 9b Mauleón P, Krinsky JL, Toste FD. J. Am. Chem. Soc. 2009; 131: 4513
- 9c Lu B, Li Y, Wang Y, Aue DH, Luo Y, Zhang L. J. Am. Chem. Soc. 2013; 135: 8512
- 9d Ackermann M, Bucher J, Rappold M, Graf K, Rominger F, Hashmi AS. K. Chem. Asian J. 2013; 8: 1786
- 9e Mackenroth AV, Antoni PW, Rominger F, Rudolph M, Hashmi AS. K. Org. Lett. 2023; 25: 2907
- 10 Horino Y, Luzung MR, Toste FD. J. Am. Chem. Soc. 2006; 128: 11364
- 11 Garayalde D, Krüger K, Nevado C. Angew. Chem. Int. Ed. 2011; 50: 911
- 12 Felix RJ, Weber D, Gutierrez O, Tantillo DJ, Gagné MR. Nat. Chem. 2012; 4: 405
- 13 Cai P.-J, Wang Y, Liu C.-H, Yu Z.-X. Org. Lett. 2014; 16: 5898
- 14 Wang Y, Cai P.-J, Yu Z.-X. J. Am. Chem. Soc. 2020; 142: 2777
- 15a Vidhani DV, Krafft ME, Alabugin IV. J. Am. Chem. Soc. 2016; 138: 2769
- 15b Wang Y.-J, Li X.-X, Chen Z. J. Org. Chem. 2020; 85: 7694
- 15c Armengol-Relats H, Mato M, Echavarren AM. Angew. Chem. Int. Ed. 2021; 60: 1916
- 16a Bluthe N, Malacria M, Gore J. Tetrahedron Lett. 1982; 23: 4263
- 16b Bluthe N, Gore J, Malacria M. Tetrahedron 1986; 42: 1333
- 17a Huang B, Hu M, Toste FD. Trends Chem. 2020; 2: 707
- 17b Bhoyare VW, Tathe AG, Das A, Chintawar CC, Patil NT. Chem. Soc. Rev. 2021; 50: 10422
- 17c Font P, Ribas X. Eur. J. Inorg. Chem. 2021; 2556
- 17d Ambegave SB, Patil NT. Synlett 2023; 34: 698
- 17e Font P, Valdés H, Ribas X. Angew. Chem. Int. Ed. 2024; 63: e202405824
- 18a Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. Nat. Commun. 2017; 8: 565
- 18b Akram MO, Das A, Chakrabarty I, Patil NT. Org. Lett. 2019; 21: 8101
- 18c Rodriguez J, Zeineddine A, Sosa CarrizoE. D, Miqueu K, Saffon-Merceron N, Amgoune A, Bourissou D. Chem. Sci. 2019; 10: 7183
- 18d Rodriguez J, Adet N, Saffon-Merceron N, Bourissou D. Chem. Commun. 2020; 56: 94
- 18e Mudshinge SR, Yang Y, Xu B, Hammond GB, Lu Z. Angew. Chem. Int. Ed. 2022; 61: e202115687
- 18f Rodriguez J, Vesseur D, Tabey A, Mallet-Ladeira S, Miqueu K, Bourissou D. ACS Catal. 2022; 12: 993
- 18g Tathe AG, Patil NT. Org. Lett. 2022; 24: 4459
- 18h Chen G, Xu B. ACS Catal. 2023; 13: 1823
- 18i Das A, Patil NT. ACS Catal. 2023; 13: 3847
- 18j Urvashi MishraS, Patil NT. Chem. Sci. 2023; 14: 13134
- 18k Chen G, Xu B. Org. Lett. 2023; 25: 6334
- 18l Gao P, Xu J, Zhou T, Liu Y, Bisz E, Dziuk B, Lalancette R, Szostak R, Zhang D, Szostak M. Angew. Chem. Int. Ed. 2023; 62: e202218427
- 18m Du W, Zhao F, Yang R, Xia Z. Org. Lett. 2024; 26: 3145
- 18n Muratov K, Zaripov E, Berezovski MV, Gagosz F. J. Am. Chem. Soc. 2024; 146: 3660
- 18o Wu J, Du W, Zhang L, Li G, Yang R, Xia Z. JACS Au 2024; 4: 3084
- 18p Kumar A, Bhattacharya N, Mane MV, Patil NT. Angew. Chem. Int. Ed. 2024; e202412682; DOI DOI: 10.1002/anie.202412682.
- 19a Chintawar CC, Yadav AK, Patil NT. Angew. Chem. Int. Ed. 2020; 59: 11808
- 19b Rigoulet M, de Boullay T, Amgoune A, Bourissou D. Angew. Chem. Int. Ed. 2020; 59: 16625
- 19c Tathe AG, Chintawar CC, Bhoyare VW, Patil NT. Chem. Commun. 2020; 56: 9304
- 19d Zhang S, Wang C, Ye X, Shi X. Angew. Chem. Int. Ed. 2020; 59: 20470
- 19e Rodriguez J, Tabey A, Mallet-Ladeira S, Bourissou D. Chem. Sci. 2021; 12: 7706
- 19f Tathe AG, Urvashi Urvashi, Yadav AK, Chintawar CC, Patil NT. ACS Catal. 2021; 11: 4576
- 19g Chintawar CC, Bhoyare VW, Mane MV, Patil NT. J. Am. Chem. Soc. 2022; 144: 7089
- 19h Ye X, Wang C, Zhang S, Tang Q, Wojtas L, Li M, Shi X. Chem. Eur. J. 2022; 28: e202201018
- 19i Font P, Valdés H, Guisado-Barrios G, Ribas X. Chem. Sci. 2022; 13: 9351
- 19j Kumar A, Das A, Patil NT. Org. Lett. 2023; 25: 2934
- 19k Sancheti SP, Singh Y, Mane MV, Patil NT. Angew. Chem. Int. Ed. 2023; 62: e202310493
- 19l Scott SC, Cadge JA, Boden GK, Bower JF, Russell CA. Angew. Chem. Int. Ed. 2023; 62: e202301526
- 20 Paroi B, Pegu C, Mane MV, Patil NT. Angew. Chem. Int. Ed. 2024; 63: e202406936
- 21a Bhoyare VW, Sosa CarrizoE. D, Chintawar CC, Gandon V, Patil NT. J. Am. Chem. Soc. 2023; 145: 8810
- 21b Wei C, Zhang L, Xia Z. Org. Lett. 2023; 25: 6808
- 21c Bhoyare VW, Tathe AG, Gandon V, Patil NT. Angew. Chem. Int. Ed. 2023; 62: e202312786 See also
- 21d Wang W, Ding M, Zhao C.-G, Chen S, Zhu C, Han J, Li W, Xie J. Angew. Chem. Int. Ed. 2023; 62: e202304019
- 22 For a detailed comparison of energetics between path I and path II, see density functional theory calculations in ref. 20.
Selected reports:
See also: