Subscribe to RSS
DOI: 10.1055/a-2441-2737
Transition-Metal-Catalyzed C(sp3)–C(sp3) Cross-Coupling to Construct All-Carbon Quaternary Carbon Centers
We thank the National Key R & D Program of China (2021YFA1500200), National Natural Science Foundation of China (22301230, 92256301, 92156006, 22221002), the Fundamental Research Funds for the Central Universities, and New Corner-Stone Science Foundation through the XPLORER PRIZE for financial support.
Abstract
Transition-metal-catalyzed C(sp³)–C(sp³) cross-coupling reactions represent a powerful strategy for constructing all-carbon quaternary centers. However, these reactions remain challenging due to significant steric hindrance effects and the propensity for side reactions such as elimination and isomerization. This review provides a comprehensive summary of the progress made over the past few decades in the construction of all-carbon quaternary centers, with a focus on coupling reactions involving tertiary C(sp³) and primary/secondary C(sp³) centers [as the cross-coupling of two tertiary C(sp³) centers remains unsuccessful]. The discussion is organized around reaction conditions, substrate scope, and reaction mechanisms, and a brief overview of transformations based on these coupling reactions is also presented.
1 Introduction
2 3° C(sp3)–1° C(sp3) Cross-Coupling
2.1 Cobalt Catalysis
2.2 Copper Catalysis
2.3 Nickel Catalysis
2.4 Iron Catalysis
2.5 Other Catalysis
3 3° C(sp3)–2° C(sp3) Cross-Coupling
3.1 Copper Catalysis
3.2 Iron Catalysis
4 Conclusion
Key words
transition metal catalysis - coupling reactions - C(sp³)–C(sp³) coupling - all-carbon quaternary carbon centers - nucleophiles - electrophilesPublication History
Received: 24 August 2024
Accepted after revision: 14 October 2024
Accepted Manuscript online:
14 October 2024
Article published online:
18 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Choi J, Fu GC. Science 2017; 356: 152
- 1b Cheng L.-J, Mankad NP. Chem. Soc. Rev. 2020; 49: 8036
- 1c Xue W, Jia X, Wang X, Tao X, Yin Z, Gong H. Chem. Soc. Rev. 2021; 50: 4162
- 2a Ginah FO, Donovan TA. Jr, Suchan SD, Pfennig DR, Ebert GW. J. Org. Chem. 1990; 55: 584
- 2b Khan S, Ghatak A, Bhar S. Tetrahedron Lett. 2015; 56: 2480
- 3 Tsuji T, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2002; 41: 4137
- 4 Iwasaki T, Takagawa H, Singh SP, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2013; 135: 9604
- 5 Iwasaki T, Yamashita K, Kuniyasu H, Kambe N. Org. Lett. 2017; 19: 3691
- 6 Palao E, López E, Torres-Moya I, de la Hoz A, Díaz-Ortiz Á, Alcázar J. Chem. Commun. 2020; 56: 8210
- 7a Terao J, Todo H, Begum SA, Kuniyasu H, Kambe N. Angew. Chem. Int. Ed. 2007; 46: 2086
- 7b Iwasaki T, Imanishi R, Shimizu R, Kuniyasu H, Terao J, Kambe N. J. Org. Chem. 2014; 79: 8522
- 8 Sai M, Yorimitsu H, Oshima K. Bull. Chem. Soc. Jpn. 2009; 82: 1194
- 9 Ren P, Stern LA, Hu X. Angew. Chem. Int. Ed. 2012; 51: 9110
- 10 Wang G.-Z, Jiang J, Bu X.-S, Dai J.-J, Xu J, Fu Y, Xu H.-J. Org. Lett. 2015; 17: 3682
- 11 Liu JH, Yang CT, Lu XY, Zhang ZQ, Xu L, Cui M, Lu X, Xiao B, Fu Y, Liu L. Chem. Eur. J. 2014; 20: 15334
- 12a Huang C.-Y, Doyle AG. J. Am. Chem. Soc. 2015; 137: 5638
- 12b Estrada JG, Williams WL, Ting SI, Doyle AG. J. Am. Chem. Soc. 2020; 142: 8928
- 13 Guo P, Jin H, Han J, Xu L, Li P, Zhan M. Org. Lett. 2023; 25: 1268
- 14a Chen H, Jia X, Yu Y, Qian Q, Gong H. Angew. Chem. Int. Ed. 2017; 56: 13103
- 14b Yu Y, Chen H, Qian Q, Yao K, Gong H. Tetrahedron 2018; 74: 5651
- 15 Wang J, Gong Y, Sun D, Gong H. Org. Chem. Front. 2021; 8: 2944
- 16 Liu S, Wang S.-L, Wan J, Peng S, Zhang J.-R, Ding H.-J, Zhang B, Ni H.-L, Cao P, Hu P, Wang B.-Q, Chen B. Org. Lett. 2023; 25: 6582
- 17 Sakai HA, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 6185
- 18a Piontek A, Bis E, Szostak M. Angew. Chem. Int. Ed. 2018; 57: 11116
- 18b Zhang Q, Zhu S.-F. Iron-Catalyzed Carbon-Carbon Coupling Reaction. In C-C Cross Couplings with 3d Base Metal Catalysts, Chap. 3. Wu X-F. Springer; Berlin: 2023
- 19 Tindall DJ, Krause H, Fürstner A. Adv. Synth. Catal. 2016; 358: 2398
- 20 Zhang Q, Liu X.-Y, Zhang Y.-D, Huang M.-Y, Zhang X.-Y, Zhu S.-F. J. Am. Chem. Soc. 2024; 146: 5051
- 21 Liu W, Lavagnino MN, Gould CA, Alcázar J, MacMillan DW. C. Science 2021; 374: 1258
- 22 Gould CA, Pace AL, MacMillan DW. C. J. Am. Chem. Soc. 2023; 145: 16330
- 23 Chen H, Ye Y, Tong W, Fang J, Gong H. Chem. Commun. 2020; 56: 454
- 24a Saito T, Nishimoto Y, Yasuda M, Bab A. J. Org. Chem. 2006; 71: 8516
- 24b Saito T, Nishimoto Y, Yasuda M, Baba A. J. Org. Chem. 2007; 72: 8588
- 25 Dao HT, Schneider U, Kobayashi S. Chem. Commun. 2011; 47: 692
- 26a Someya H, Ohmiya H, Yorimitsu H, Oshima K. Org. Lett. 2008; 10: 969
- 26b Mitamura Y, Asada Y, Murakami K, Someya H, Yorimitsu H, Oshima K. Chem. Asian J. 2010; 5: 1487
- 27 Onodera G, Yamamoto E, Tonegawa S, Iezumi M, Takeuchi R. Adv. Synth. Catal. 2011; 353: 2013
- 28 Lai Y.-L, Huang J.-M. Org. Lett. 2017; 19: 2022
- 29 Zhang P, Le H, Kyne RE, Morken JP. J. Am. Chem. Soc. 2011; 133: 9716
- 30 Yang C.-T, Zhang Z.-Q, Liang J, Liu J.-H, Lu X.-Y, Chen H.-H, Liu L. J. Am. Chem. Soc. 2012; 134: 11124