Subscribe to RSS
DOI: 10.1055/a-2422-1340
Electrochemically Promoted Regioselective C3–H Trifluoro/Difluoromethylation of 2H-Indazoles at Room Temperature
Dedicated to Prof. B. C. Ranu on the occasion of his 75th Birthday
Abstract
A green and sustainable electrochemical approach is developed for the regioselective C3–H trifluoro/difluoromethylation of 2H-indazoles at room temperature. Relatively less expensive C-soft (+)/Ni-foam (–) electrodes are utilized to selectively functionalize the 2H-indazoles effectively by avoiding the use of any external oxidant and transition-metal salt. Moreover, along with the C3–H trifluoromethylation, for the very first time, direct C3–H difluoromethylation of 2-phenyl-2H-indazoles is accomplished. Diverse C3–H trifluoro/difluoromethylated 2H-indazoles having an array of functionalities are successfully synthesized in moderate to very good yields. As an application, a precursor of both an estrogen receptor ligand and an acetyl Co-A carboxylase inhibitor is synthesized. A plausible reaction mechanism is proposed based on control experiments and cyclic voltammetry studies.
Key words
trifluoromethylation - difluoromethylation - regioselective - 2H-indazole - transition-metal-free - external-oxidant-freeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2422-1340.
- Supporting Information
Publication History
Received: 12 August 2024
Accepted after revision: 25 September 2024
Accepted Manuscript online:
25 September 2024
Article published online:
31 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kabir E, Uzzaman M. Results Chem. 2022; 4: 100606
- 1b Qadir T, Amin A, Sharma PK, Jeelani I, Abe H. Open J. Med. Chem. 2022; 16: e187410452202280
- 2a Puri S, Sawant S, Juvale K. J. Mol. Struct. 2023; 1284: 135327
- 2b Zhang S.-G, Liang C.-G, Zhang W.-H. Molecules 2018; 23: 2783
- 3 Fludzinski P, Evrard DA, Bloomquist WE, Lacefield WB, Pfeifer W, Jones ND, Deeter JB, Cohen ML. J. Med. Chem. 1987; 30: 1535
- 4a Mal S, Malik U, Mahapatra M, Mishra A, Pal D, Paidesetty SK. Drug Dev. Res. 2022; 83: 1469
- 4b Gaikwad DD, Chapolikar AD, Devkate CG, Warad KD, Tayade AP, Pawar RP, Domb AJ. Eur. J. Med. Chem. 2015; 90: 707
- 5a Angelis MD, Stossi F, Carlson KA, Katzenellenbogen BS, Katzenellenbogen JA. J. Med. Chem. 2005; 48: 1132
- 5b Ikuo F, Takuya F, Hideki H, Zenichi I, Makoto K, Asato K, Ryo M, Masataka M, Tohru Y, Tsuneo Y, Kazuko Y. WO2012074126(A1), 2012
- 5c Ngo TN, Ejaz SA, Hung TQ, Dang TT, Iqbal J, Lecka J, Sévigny J, Langer P. Org. Biomol. Chem. 2015; 13: 8277
- 6a Yang Z, Yu J.-T, Pan C. Org. Biomol. Chem. 2022; 20: 7746
- 6b Giraud F, Anizon F, Moreau P. Targets in Heterocyclic Systems: Chemistry and Properties, Vol. 25. Società Chimica Italiana; Roma: 2021: 100-112
- 7a Zhu W, Wang J, Wang S, Gu Z, Aceña JL, Izawa K, Liu H, Soloshonok VA. J. Fluorine Chem. 2014; 167: 37
- 7b Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
- 7c Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
- 7d Jeschke P. ChemBioChem 2004; 5: 570
- 7e Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
- 7f Hird M. Chem. Soc. Rev. 2007; 36: 2070
- 7g Ametamey SM, Honer M, Schubiger PA. Chem. Rev. 2008; 108: 1501
- 7h Francis F, Wuest F. Molecules 2021; 26: 6478
- 8a Kiselyov AS, Strekowski L. Org. Prep. Proced. Int. 1996; 28: 289
- 8b Kumadaki I, Ando A, Sato K, Tarui A, Omote M. Synthesis 2010; 1865
- 9a Irons J. Neuropsychiatr. Dis. Treat. 2005; 1: 289
- 9b Akinosoglou K, Schinas G, Gogos C. Viruses 2022; 14: 2540
- 10a Barata-Vallejo S, Postigo A. Chem. Eur. J. 2020; 26: 11065
- 10b Kuninobu Y. Chem. Rec. 2023; 23: e202300003
- 11a Sessler CD, Rahm M, Becker S, Goldberg JM, Wang F, Lippard SJ. J. Am. Chem. Soc. 2017; 139: 9325
- 11b Katzenellenbogen JA, Tiwari-Woodruif SK, Kim SH, Katzenellenbogen B. WO2019226936 (A1), 2019
- 12a Roy S, Gregg BT, Gribble GW, Le V.-D, Roy S. Tetrahedron 2011; 67: 2161
- 12b Lundgren RJ, Stradiotto M. Angew. Chem. Int. Ed. 2010; 49: 9322
- 12c Lishchynskyi A, Novikov MA, Martin E, Escudero-Adán EC, Novák P, Grushin VV. J. Org. Chem. 2013; 78: 11126
- 12d Chen P, Liu G. Synthesis 2013; 45: 2919
- 12e Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
- 13 Ghosh P, Mondal S, Hajra A. J. Org. Chem. 2018; 83: 13618
- 14 Murugan A, Babu VN, Polu A, Sabarinathan N, Bakthadoss M, Sharada DS. J. Org. Chem. 2019; 84: 7796
- 15 He X, Chen Z, Zhu X, Liu H, Chen Y, Sun Z, Chu W. Org. Biomol. Chem. 2023; 21: 1814
- 16a Kim W, Kim HY, Oh K. Org. Lett. 2020; 22: 6319
- 16b Mahanty K, Maiti D, De Sarkar S. J. Org. Chem. 2020; 85: 3699
- 16c Sun M, Zhou Y, Li L, Wang L, Ma Y, Li P. Org. Chem. Front. 2021; 8: 754
- 16d Lin S, Cheng X, Hasimujiang B, Xu Z, Li F, Ruan Z. Org. Biomol. Chem. 2022; 20: 117
- 16e Wang D, Wang J, Ma C, Jiang Y, Yu B. Chin. J. Chem. 2022; 42: 4024
- 16f Liu X, Wu Z, Feng C, Liu W, Li M, Shen Z. Eur. J. Org. Chem. 2022; 2022: e202200262
- 17 Wei T, Wang K, Yu Z, Hou J, Xie Y. Tetrahedron Lett. 2021; 86: 153313
- 18a Bel Abed H, Weißing N, Schoene J, Paulus J, Sewald N, Nazaré M. Tetrahedron Lett. 2018; 59: 1813
- 18b Laru S, Bhattacharjee S, Hajra A. Chem. Commun. 2022; 58: 13604
- 19a Shi A, Xiang P, Wu Y, Ge C, Liu Y, Sun K, Yu B. Synlett 2023; 34: 457
- 19b Kumar MR, Park A, Park N, Lee S. Org. Lett. 2011; 13: 3542
- 20 Ghosh D, Ghosh S, Hajra A. Adv. Synth. Catal. 2021; 363: 5047
These methods required prefunctionalization of the starting material and multistep reactions to afford difluoromethylated 2H-indazoles, see