Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2025; 36(07): 845-848
DOI: 10.1055/a-2414-7887
DOI: 10.1055/a-2414-7887
letter
Diiodine–Triethylsilane System: A Practical Method for Deprotection of Aryl Benzyl Ethers
This work was supported by the Natural Science Foundation of Sichuan Province (2022NSFSC1241), the Open Project Program of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province (CSPC202002), and the Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering (SUSE652A014).

Abstract
A practical method for the debenzylation of aryl benzyl ethers has been developed using easy-to-operate I2 and Et3SiH, as well as the green solvent ethyl acetate. Halo, methoxy, ester, and nitro groups on the benzene ring of the aryl benzyl ether are compatible with this debenzylation. Control experiments revealed that Et3SiI, generated in situ, might be the actual promoter of the procedure. This method does not require a separate desilylation reaction to obtain phenol products.
Publication History
Received: 03 August 2024
Accepted after revision: 13 September 2024
Accepted Manuscript online:
13 September 2024
Article published online:
02 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Imaizumi T, Yamashita Y, Nakazawa Y, Okano K, Sakata J, Tokuyama H. Org. Lett. 2019; 21: 6185
- 1b O’Keefe BM, Mans DM, Kaelin DE. Jr, Martin SF. J. Am. Chem. Soc. 2010; 132: 15528
- 1c Lane JW, Chen Y, Williams RM. J. Am. Chem. Soc. 2005; 127: 12684
- 1d Okano K, Tokuyama H, Fukuyama T. J. Am. Chem. Soc. 2006; 128: 7136
- 2a Zhang K, Okumura S, Uozumi Y. Eur. J. Org. Chem. 2024; e202400322
- 2b Korvinson KA, Akula HK, Malinchak CT, Sebastian D, Wei W, Khandaker TA, Andrzejewska MR, Zajc B, Lakshman MK. Adv. Synth. Catal. 2020; 362: 166
- 3 Chouhan M, Kumar K, Sharma R, Grover V, Nair VA. Tetrahedron Lett. 2013; 54: 4540
- 4 Coleman RS, Shah JA. Synthesis 1999; 1399
- 5 Alonso E, Ramón DJ, Yus M. Tetrahedron 1997; 53: 14355
- 6 Fuji K, Ichikawa K, Node M, Fujita E. J. Org. Chem. 1979; 44: 1661
- 7 Akiyama T, Hirofuji H, Ozaki S. Tetrahedron Lett. 1991; 32: 1321
- 8 Okano K, Okuyama K.-i, Fukuyama T, Tokuyama H. Synlett 2008; 1977
- 9 Bhatt MV, El-Morey SS. Synthesis 1982; 1048
- 10 Griesbach CE, Desrosiers J.-N, Sharninghausen L, Makowski T, Guinness SM, Wood E, Salazar C, Kong C, Verghese J. Org. Process Res. Dev. 2024; 28: 1504
- 11 Pan W, Li C, Zhu H, Li F, Li T, Zhao W. Org. Biomol. Chem. 2021; 19: 7633
- 12a Yabuta T, Hayashi M, Matsubara R. J. Org. Chem. 2021; 86: 2545
- 12b Meng J, Ji L, Jiang X. Organometallics 2024; 43: 1682
- 13 Lin F, Tse H.-Y, Erythropel HC, Petrović PV, Garedew M, Chen J, Lam JC.-H, Anastas PT. Green Chem. 2022; 24: 6295
- 14 Sachdev D, Wilson GR, Srivastava NM, Dubey A. Catal. Commun. 2014; 51: 90
- 15a Jiang J, Xiao L. ChemistrySelect 2020; 5: 4247
- 15b Jiang J, Xiao L, Li Y.-L. Synlett 2021; 32: 291
- 15c Jiang J, Feng S, Chang J. Synlett 2023; 34: 1634
- 15d Fujita S, Shibuya M, Yamamoto Y. Synthesis 2017; 49: 4199
- 15e Chaudhary P, Korde R, Gupta S, Sureshbabu P, Sabiah S, Kandasamy J. Adv. Synth. Catal. 2018; 360: 556
- 15f Nozawa-Kumada K, Noguchi K, Akada T, Shigeno M, Kondo Y. Org. Lett. 2021; 23: 6659
- 15g Dolui P, Nair A, Saini P, Verma A, Elias AJ. Asian J. Org. Chem. 2022; 11: e202200650
- 16a Monika Monika, Chander Chander, Ram S, Sharma PK. Asian J. Org. Chem. 2023; 12: e202200616
- 16b Parvatkar PT, Manetsch R, Banik BK. Chem. Asian J. 2019; 14: 6
- 18 Pastore A, Valerio S, Adinolfi M, Iadonisi A. Chem. Eur. J. 2011; 17: 5881
- 19 Calvo-Flores FG, Monteagudo-Arrebola MJ, Dobado JA, Isac-García J. Top. Curr. Chem. 2018; 376: 18
- 20 Rundlöf T, Mathiasson M, Bekiroglu S, Hakkarainen B, Bowden T, Arvidsson T. J. Pharm. Biomed. Anal. 2010; 52: 645
- 21 Eaborn C. J. Chem. Soc. 1949; 2755
- 22 Jung ME, Lyster MA. J. Org. Chem. 1977; 42: 3761
- 23 Torrens AA, Ly AL, Fong D, Adronov A. Eur. J. Org. Chem. 2022; e202200570
- 24 Olah GA, Narang SC. Tetrahedron 1982; 38: 2225
- 25 2-Naphthol (2a); Typical Procedure 2-(Benzyloxy)naphthalene (1a; 1.0 mmol, 1.0 equiv.), EtOAc (2.0 mL), Et3SiH (1.0 mmol, 1.0 equiv), and I2 (1.0 mmol, 1.0 equiv) were successively added to a flask at r.t., and the mixture was stirred for 30 min at r.t. EtOAc (20.0 mL) and 0.5 mol/L aq Na2S2O3 (10 mL) were then added to the flask and the organic layer was washed with brine, dried (Na2SO4), filtered, concentrated, and purified by flash column chromatography [silica gel (100–200 mesh), PE–EtOAc (10:1)] to give a white solid; yield: 142.6 mg (99%); mp 122–123 ℃. 1H NMR (600 MHz, CDCl3): δ = 7.82–7.73 (m, 2 H), 7.69 (d, J = 8.4 Hz, 1 H), 7.44 (t, J = 7.8 Hz, 1 H), 7.35 (t, J = 7.8 Hz, 1 H), 7.15 (d, J = 2.4 Hz, 1 H), 7.13–7.09 (m, 1 H), 5.12 (s, 1 H). 13C NMR (150 MHz, CDCl3): δ = 153.4, 136.1, 130.0, 129.1, 127.9, 126.7, 126.5, 123.8, 117.9, 109.7.