Subscribe to RSS

DOI: 10.1055/a-2412-1398
Deoxyfluorination: A Detailed Overview of Recent Developments
Authors
The authors would like to thank the Slovenian Research and Innovation Agency (Javna Agencija za Raziskovalno Dejavnost RS; ARIS) for financial support of Project N1-0185 (Advanced reagents for (asymmetric) nucleophilic fluorination) and Research Programme P1-0045 (Inorganic Chemistry and Technology).

Abstract
Fluorine organic compounds have been a predominant force of pharmaceutical chemistry for modern drug design, with an increasing amount of fluorine-containing compounds entering the market. Methodologies for fluorine atom incorporation into organic molecules are still challenging to date and thus represent an important research area. Deoxyfluorination serves as a useful tool for the construction of carbon–fluorine bonds in biologically active molecules by converting a common hydroxyl group into the corresponding fluoride. In this review, we have summarized and categorized deoxyfluorination reaction protocols developed over the last decade (2015–2024) by the structural type of C–O bond deoxyfluorination, including substrates like alcohols, phenols, ketones, aldehydes, and carboxylic acids.
1 Introduction
2 Deoxyfluorination of C(sp3)–O Bonds
2.1 Alcohols
2.2 Alcohol Derivatives
3 Deoxyfluorination of C(sp2)–O Bonds
3.1 Phenols
3.2 Phenol Derivatives
3.3 Aldehydes and Ketones
3.4 Carboxylic Acids
4 Conclusions
Publication History
Received: 09 May 2024
Accepted after revision: 28 August 2024
Accepted Manuscript online:
09 September 2024
Article published online:
08 October 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Campbell MG, Ritter T. Chem. Rev. 2015; 115: 612
- 2 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 3 Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 4 Yerien DE, Bonesi S, Postigo A. Org. Biomol. Chem. 2016; 14: 8398
- 5 Campbell MG, Ritter T. Org. Process Res. Dev. 2014; 18: 474
- 6 Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
- 7 Smart BE. J. Fluorine Chem. 2001; 109: 3
- 8 Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
- 9 Caron S. Org. Process Res. Dev. 2020; 24: 470
- 10 Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073
- 11 Hu W.-L, Hu X.-G, Hunter L. Synthesis 2017; 49: 4917
- 12 Aggarwal T, Sushmita, Verma AK. Org. Chem. Front. 2021; 8: 6452
- 13 Nielsen MK, Ugaz CR, Li W, Doyle AG. J. Am. Chem. Soc. 2015; 137: 9571
- 14 Goldberg NW, Shen X, Li J, Ritter T. Org. Lett. 2016; 18: 6102
- 15 Li L, Ni C, Wang F, Hu J. Nat. Commun. 2016; 7: 13320
- 16 Lee C, Lai J, Epifanov M, Wang CX, Sammis GM. J. Fluorine Chem. 2021; 251: 109888
- 17 Nielsen MK, Ahneman DT, Riera O, Doyle AG. J. Am. Chem. Soc. 2018; 140: 5004
- 18 de Azambuja F, Lovrien SM, Ross P, Ambler BR, Altman RA. J. Org. Chem. 2019; 84: 2061
- 19 Guo J, Kuang C, Rong J, Li L, Ni C, Hu J. Chem. Eur. J. 2019; 25: 7259
- 20 Jin P, Shen X. J. Fluorine Chem. 2022; 261–262: 110029
- 21 Zhang W, Gu Y.-C, Lin J.-H, Xiao J.-C. Org. Lett. 2020; 22: 6642
- 22 Sood DE, Champion S, Dawson DM, Chabbra S, Bode BE, Sutherland A, Watson AJ. B. Angew. Chem. Int. Ed. 2020; 59: 8460
- 23 Zhao S, Guo Y, Su Z, Cao W, Wu C, Chen Q.-Y. Org. Lett. 2020; 22: 8634
- 24 McTeague TA, Jamison TF. Angew. Chem. Int. Ed. 2016; 55: 15072
- 25 Tomar P, Braun T, Kemnitz E. Chem. Commun. 2018; 54: 9753
- 26 Kim S, Khomutnyk Y, Bannykh A, Nagorny P. Org. Lett. 2021; 23: 190
- 27 Bertrand X, Pucheault M, Chabaud L, Paquin J.-F. J. Org. Chem. 2023; 88: 14527
- 28 Prinčič G, Omahen B, Jelen J, Gruden E, Tavčar G, Iskra J. J. Org. Chem. 2024; 89: 10557
- 29 Brioche J. Tetrahedron Lett. 2018; 59: 4387
- 30 Aguilar Troyano FJ, Ballaschk F, Jaschinski M, Özkaya Y. Gómez-Suárez, Chem. Eur. J. 2019; 25: 14054
- 31 Vincent É, Brioche J. Eur. J. Org. Chem. 2021; 2421
- 32 González-Esguevillas M, Miró J, Jeffrey JL, MacMillan DW. C. Tetrahedron 2019; 75: 4222
- 33 Su JY, Grünenfelder DC, Takeuchi K, Reisman SE. Org. Lett. 2018; 20: 4912
- 34 Kiaku C, Martinage D, Sicim Y, Leech MC, Walsh JM, Poole DL, Mason J, Goodall IC. A, Devo P, Lam K. Org. Lett. 2024; 26: 2697
- 35 Neumann CN, Hooker JM, Ritter T. Nature 2016; 534: 369
- 36 Schimler SD, Cismesia MA, Hanley PS, Froese RD. J, Jansma MJ, Bland DC, Sanford MS. J. Am. Chem. Soc. 2017; 139: 1452
- 37 Sheng C, Li Z, Pu M, Lei M. J. Phys. Org. Chem. 2022; 35: e4389
- 38 Schimler SD, Froese RD. J, Bland DC, Sanford MS. J. Org. Chem. 2018; 83: 11178
- 39 Wannberg J, Wallinder C, Ünlüsoy M, Sköld C, Larhed M. J. Org. Chem. 2013; 78: 4184
- 40 Tang P, Wang W, Ritter T. J. Am. Chem. Soc. 2011; 133: 11482
- 41 Fujimoto T, Ritter T. Org. Lett. 2015; 17: 544
- 42 Alič B, Petrovčič J, Jelen J, Tavčar G, Iskra J. J. Org. Chem. 2022; 87: 5987
- 43 Jelen J, Tavčar G. Org. Lett. 2023; 25: 3649
- 44 Tay NE. S, Chen W, Levens A, Pistritto VA, Huang Z, Wu Z, Li Z, Nicewicz DA. Nat. Catal. 2020; 3: 734
- 45 Lal GS, Pez GP, Pesaresi RJ, Prozonic FM, Cheng H. Chem. Commun. 1999; 215
- 46 L’Heureux A, Beaulieu F, Bennett C, Bill DR, Clayton S, LaFlamme F, Mirmehrabi M, Tadayon S, Tovell D, Couturier M. J. Org. Chem. 2010; 75: 3401
- 47 Beaulieu F, Beauregard L.-P, Courchesne G, Couturier M, LaFlamme F, L’Heureux A. Org. Lett. 2009; 11: 5050
- 48 Thibeault O, Ouellet-Du Berger M.-R, Gonay M, Paquin J.-F. Org. Biomol. Chem. 2023; 21: 6115
- 49 Liu X, Liu L, Huang T, Zhang J, Tang Z, Li C, Chen T. Org. Lett. 2021; 23: 4930
- 50 Mao R, Bera S, Cheseaux A, Hu X. Chem. Sci. 2019; 10: 9555
- 51 Scattolin T, Deckers K, Schoenebeck F. Org. Lett. 2017; 19: 5740
- 52 Gonay M, Batisse C, Paquin J.-F. Synthesis 2021; 53: 653
- 53 Ogiwara Y, Sakai N. Angew. Chem. Int. Ed. 2020; 59: 574
- 54 Blanchard N, Bizet V. Angew. Chem. Int. Ed. 2019; 58: 6814
- 55 Nagano S, Maruoka K. Adv. Synth. Catal. 2023; 365: 295
- 56 Munoz SB, Dang H, Ispizua-Rodriguez X, Mathew T, Prakash GK. S. Org. Lett. 2019; 21: 1659
- 57 Mao S, Kramer JH, Sun H. J. Org. Chem. 2021; 86: 6066
- 58 Wang X, Wang F, Huang F, Ni C, Hu J. Org. Lett. 2021; 23: 1764
- 59 Song H, Tian Z, Xiao J, Zhang C. Chem. Eur. J. 2020; 26: 16261
- 60 Bonnefoy C, Gallego A, Delobel C, Raynal B, Decourt M, Chefdeville E, Hanquet G, Panossian A, Leroux FR, Toulgoat F, Billard T. Eur. J. Org. Chem. 2024; 27: e202400142
- 61 Liang Y, Zhao Z, Taya A, Shibata N. Org. Lett. 2021; 23: 847
- 62 Brittain WD. G, Cobb SL. Org. Lett. 2021; 23: 5793
- 63 Gonay M, Batisse C, Paquin J.-F. J. Org. Chem. 2020; 85: 10253
- 64 Mahmoud EM, Mori S, Sumii Y, Shibata N. Org. Lett. 2023; 25: 2810