Am J Perinatol
DOI: 10.1055/a-2405-1493
Review Article

Diabetes and Early Development: Epigenetics, Biological Stress, and Aging

Guanglei Wang
1   Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
,
Wei-Bin Shen
1   Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
,
Anna Wu Chen
1   Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
,
E. Albert Reece
1   Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
2   Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
,
Peixin Yang
1   Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
2   Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
› Author Affiliations

Abstract

Pregestational diabetes, either type 1 or type 2 diabetes, induces structural birth defects including neural tube defects and congenital heart defects in human fetuses. Rodent models of type 1 and type 2 diabetic embryopathy have been established and faithfully mimic human conditions. Hyperglycemia of maternal diabetes triggers oxidative stress in the developing neuroepithelium and the embryonic heart leading to the activation of proapoptotic kinases and excessive cell death. Oxidative stress also activates the unfolded protein response and endoplasmic reticulum stress. Hyperglycemia alters epigenetic landscapes by suppressing histone deacetylation, perturbing microRNA (miRNA) expression, and increasing DNA methylation. At cellular levels, besides the induction of cell apoptosis, hyperglycemia suppresses cell proliferation and induces premature senescence. Stress signaling elicited by maternal diabetes disrupts cellular organelle homeostasis leading to mitochondrial dysfunction, mitochondrial dynamic alteration, and autophagy impairment. Blocking oxidative stress, kinase activation, and cellular senescence ameliorates diabetic embryopathy. Deleting the mir200c gene or restoring mir322 expression abolishes maternal diabetes hyperglycemia-induced senescence and cellular stress, respectively. Both the autophagy activator trehalose and the senomorphic rapamycin can alleviate diabetic embryopathy. Thus, targeting cellular stress, miRNAs, senescence, or restoring autophagy or mitochondrial fusion is a promising approach to prevent poorly controlled maternal diabetes-induced structural birth defects. In this review, we summarize the causal events in diabetic embryopathy and propose preventions for this pathological condition.

Key Points

  • Maternal diabetes induces structural birth defects.

  • Kinase signaling and cellular organelle stress are critically involved in neural tube defects.

  • Maternal diabetes increases DNA methylation and suppresses developmental gene expression.

  • Cellular apoptosis and senescence are induced by maternal diabetes in the neuroepithelium.

  • microRNAs disrupt mitochondrial fusion leading to congenital heart diseases in diabetic pregnancy.



Publication History

Received: 13 May 2024

Accepted: 26 August 2024

Accepted Manuscript online:
29 August 2024

Article published online:
27 September 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Mathews TJ, Driscoll AK. Trends in infant mortality in the United States, 2005-2014. NCHS Data Brief 2017; (279) 1-8
  • 2 Tsao CW, Aday AW, Almarzooq ZI. et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2023 Update: a report from the American Heart Association. Circulation 2023; 147 (08) e93-e621
  • 3 Correa A, Gilboa SM, Besser LM. et al. Diabetes mellitus and birth defects. Am J Obstet Gynecol 2008; 199 (03) 237.e1-237.e9
  • 4 Greene MF, Hare JW, Cloherty JP, Benacerraf BR, Soeldner JS. First-trimester hemoglobin A1 and risk for major malformation and spontaneous abortion in diabetic pregnancy. Teratology 1989; 39 (03) 225-231
  • 5 Reece EA, Wiznitzer A, Homko CJ, Hagay Z, Wu YK. Synchronization of the factors critical for diabetic teratogenesis: an in vitro model. Am J Obstet Gynecol 1996; 174 (04) 1284-1288
  • 6 Yang P, Reece EA, Wang F, Gabbay-Benziv R. Decoding the oxidative stress hypothesis in diabetic embryopathy through proapoptotic kinase signaling. Am J Obstet Gynecol 2015; 212 (05) 569-579
  • 7 Dong D, Reece EA, Lin X, Wu Y, AriasVillela N, Yang P. New development of the yolk sac theory in diabetic embryopathy: molecular mechanism and link to structural birth defects. Am J Obstet Gynecol 2016; 214 (02) 192-202
  • 8 Yang P, Li X, Xu C. et al. Maternal hyperglycemia activates an ASK1-FoxO3a-caspase 8 pathway that leads to embryonic neural tube defects. Sci Signal 2013; 6 (290) ra74
  • 9 Wang F, Fisher SA, Zhong J, Wu Y, Yang P. Superoxide dismutase 1 in vivo ameliorates maternal diabetes mellitus-induced apoptosis and heart defects through restoration of impaired Wnt signaling. Circ Cardiovasc Genet 2015; 8 (05) 665-676
  • 10 Aljumaiah MM, Alonazi MA, Al-Dbass AM. et al. Association of maternal diabetes and autism spectrum disorders in offspring: a study in a rodent model of autism. J Mol Neurosci 2022; 72 (02) 349-358
  • 11 Wu Y, Wang F, Fu M, Wang C, Quon MJ, Yang P. Cellular stress, excessive apoptosis, and the effect of Metformin in a mouse model of type 2 diabetic embryopathy. Diabetes 2015; 64 (07) 2526-2536
  • 12 Wang F, Xu C, Reece EA. et al. Protein kinase C-alpha suppresses autophagy and induces neural tube defects via miR-129-2 in diabetic pregnancy. Nat Commun 2017; 8: 15182
  • 13 Yang P, Xu C, Reece EA. et al. Tip60- and sirtuin 2-regulated MARCKS acetylation and phosphorylation are required for diabetic embryopathy. Nat Commun 2019; 10 (01) 282
  • 14 Xu C, Shen WB, Reece EA. et al. Maternal diabetes induces senescence and neural tube defects sensitive to the senomorphic rapamycin. Sci Adv 2021; 7 (27) 7
  • 15 Yang P, Zhao Z, Reece EA. Activation of oxidative stress signaling that is implicated in apoptosis with a mouse model of diabetic embryopathy. Am J Obstet Gynecol 2008; 198 (01) 130.e1-130.e7
  • 16 Horal M, Zhang Z, Stanton R, Virkamäki A, Loeken MR. Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis. Birth Defects Res A Clin Mol Teratol 2004; 70 (08) 519-527
  • 17 Cederberg J, Eriksson UJ. Antioxidative treatment of pregnant diabetic rats diminishes embryonic dysmorphogenesis. Birth Defects Res A Clin Mol Teratol 2005; 73 (07) 498-505
  • 18 Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24 (05) 981-990
  • 19 Yang P, Zhao Z, Reece EA. Involvement of c-Jun N-terminal kinases activation in diabetic embryopathy. Biochem Biophys Res Commun 2007; 357 (03) 749-754
  • 20 Li X, Weng H, Xu C, Reece EA, Yang P. Oxidative stress-induced JNK1/2 activation triggers proapoptotic signaling and apoptosis that leads to diabetic embryopathy. Diabetes 2012; 61 (08) 2084-2092
  • 21 Li X, Xu C, Yang P. c-Jun NH2-terminal kinase 1/2 and endoplasmic reticulum stress as interdependent and reciprocal causation in diabetic embryopathy. Diabetes 2013; 62 (02) 599-608
  • 22 Yang P, Zhao Z, Reece EA. Blockade of c-Jun N-terminal kinase activation abrogates hyperglycemia-induced yolk sac vasculopathy in vitro. Am J Obstet Gynecol 2008; 198 (03) 321.e1-321.e7
  • 23 Wang F, Weng H, Quon MJ. et al. Dominant negative FADD dissipates the proapoptotic signalosome of the unfolded protein response in diabetic embryopathy. Am J Physiol Endocrinol Metab 2015; 309 (10) E861-E873
  • 24 Wang F, Wu Y, Gu H. et al. Ask1 gene deletion blocks maternal diabetes-induced endoplasmic reticulum stress in the developing embryo by disrupting the unfolded protein response signalosome. Diabetes 2015; 64 (03) 973-988
  • 25 Wang G, Song S, Shen WB, Reece EA, Yang P. MicroRNA-322 overexpression reduces neural tube defects in diabetic pregnancies. Am J Obstet Gynecol 2024; 230 (02) 254.e1-254.e13
  • 26 Zhao Z, Cao L, Reece EA. Formation of neurodegenerative aggresome and death-inducing signaling complex in maternal diabetes-induced neural tube defects. Proc Natl Acad Sci U S A 2017; 114 (17) 4489-4494
  • 27 Iannitti T, Palmieri B. Clinical and experimental applications of sodium phenylbutyrate. Drugs R D 2011; 11 (03) 227-249
  • 28 Wang F, Reece EA, Yang P. Superoxide dismutase 1 overexpression in mice abolishes maternal diabetes-induced endoplasmic reticulum stress in diabetic embryopathy. Am J Obstet Gynecol 2013; 209 (04) 345.e1-345.e7
  • 29 Sarangarajan R, Meera S, Rukkumani R, Sankar P, Anuradha G. Antioxidants: Friend or foe?. Asian Pac J Trop Med 2017; 10 (12) 1111-1116
  • 30 Khandelwal M, Reece EA, Wu YK, Borenstein M. Dietary myo-inositol therapy in hyperglycemia-induced embryopathy. Teratology 1998; 57 (02) 79-84
  • 31 Xu C, Li X, Wang F, Weng H, Yang P. Trehalose prevents neural tube defects by correcting maternal diabetes-suppressed autophagy and neurogenesis. Am J Physiol Endocrinol Metab 2013; 305 (05) E667-E678
  • 32 Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000; 7 (12) 1166-1173
  • 33 Wang G, Lu W, Shen W-B, Karbowski M, Kaushal S, Yang P. Small molecule activators of mitochondrial fusion prevent congenital heart defects induced by maternal diabetes. JACC Basic Transl Sci 2024; 9 (03) 303-318
  • 34 Fimia GM, Stoykova A, Romagnoli A. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 2007; 447 (7148) 1121-1125
  • 35 Ye J, Tong Y, Lv J. et al. Rare mutations in the autophagy-regulating gene AMBRA1 contribute to human neural tube defects. Hum Mutat 2020; 41 (08) 1383-1393
  • 36 Cao S, Shen WB, Reece EA, Yang P. Deficiency of the oxidative stress-responsive kinase p70S6K1 restores autophagy and ameliorates neural tube defects in diabetic embryopathy. Am J Obstet Gynecol 2020; 223 (05) 753.e1-753.e14
  • 37 Xu C, Chen X, Reece EA, Lu W, Yang P. The increased activity of a transcription factor inhibits autophagy in diabetic embryopathy. Am J Obstet Gynecol 2019; 220 (01) 108.e1-108.e12
  • 38 Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 2009; 27 (05) 351-357
  • 39 Bird A. Perceptions of epigenetics. Nature 2007; 447 (7143) 396-398
  • 40 Kalish JM, Jiang C, Bartolomei MS. Epigenetics and imprinting in human disease. Int J Dev Biol 2014; 58 (2-4): 291-298
  • 41 Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of epigenetics in cardiac development and congenital diseases. Physiol Rev 2018; 98 (04) 2453-2475
  • 42 Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38 (01) 23-38
  • 43 Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev 2011; 25 (10) 1010-1022
  • 44 Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13 (07) 484-492
  • 45 Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001; 293 (5532) 1089-1093
  • 46 Tahiliani M, Koh KP, Shen Y. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324 (5929) 930-935
  • 47 Golic M, Stojanovska V, Bendix I. et al. Diabetes mellitus in pregnancy leads to growth restriction and epigenetic modification of the Srebf2 gene in rat fetuses. Hypertension 2018; 71 (05) 911-920
  • 48 Schulze KV, Bhatt A, Azamian MS. et al. Aberrant DNA methylation as a diagnostic biomarker of diabetic embryopathy. Genet Med 2019; 21 (11) 2453-2461
  • 49 Wei D, Loeken MR. Increased DNA methyltransferase 3b (Dnmt3b)-mediated CpG island methylation stimulated by oxidative stress inhibits expression of a gene required for neural tube and neural crest development in diabetic pregnancy. Diabetes 2014; 63 (10) 3512-3522
  • 50 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116 (02) 281-297
  • 51 Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet 2016; 32 (01) 42-56
  • 52 Kamimoto Y, Sugiyama T, Kihira T. et al. Transgenic mice overproducing human thioredoxin-1, an antioxidative and anti-apoptotic protein, prevents diabetic embryopathy. Diabetologia 2010; 53 (09) 2046-2055
  • 53 Jarrell DK, Lennon ML, Jacot JG. Epigenetics and mechanobiology in heart development and congenital heart disease. Diseases 2019; 7 (03) 7
  • 54 Lee Y, Ahn C, Han J. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425 (6956) 415-419
  • 55 Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol 2018; 837: 8-24
  • 56 Li F, Wan M, Zhang B. et al. Bivalent histone modifications and development. Curr Stem Cell Res Ther 2018; 13 (02) 83-90
  • 57 Xu Q, Xie W. Epigenome in early mammalian development: inheritance, reprogramming and establishment. Trends Cell Biol 2018; 28 (03) 237-253
  • 58 Deevy O, Bracken AP. PRC2 functions in development and congenital disorders. Development 2019; 146 (19) dev181354
  • 59 Zhang Q, Xue P, Li H. et al. Histone modification mapping in human brain reveals aberrant expression of histone H3 lysine 79 dimethylation in neural tube defects. Neurobiol Dis 2013; 54: 404-413
  • 60 Li D, Wan C, Bai B, Cao H, Liu C, Zhang Q. Identification of histone acetylation markers in human fetal brains and increased H4K5ac expression in neural tube defects. Mol Genet Genomic Med 2019; 7 (12) e1002
  • 61 Yu J, Wu Y, Yang P. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects. J Neurochem 2016; 137 (03) 371-383
  • 62 Chen ACH, Lee YL, Fong SW, Wong CCY, Ng EHY, Yeung WSB. Hyperglycemia impedes definitive endoderm differentiation of human embryonic stem cells by modulating histone methylation patterns. Cell Tissue Res 2017; 368 (03) 563-578
  • 63 Hoelscher SC, Doppler SA, Dreßen M, Lahm H, Lange R, Krane M. MicroRNAs: pleiotropic players in congenital heart disease and regeneration. J Thorac Dis 2017; 9 (Suppl. 01) S64-S81
  • 64 Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10 (02) 126-139
  • 65 Deng M, Zhao JY, Tu PF, Jiang Y, Li ZB, Wang YH. Echinacoside rescues the SHSY5Y neuronal cells from TNFalpha-induced apoptosis. Eur J Pharmacol 2004; 505 (1-3): 11-18
  • 66 Liu Y, Liu J, Liu A, Yin H, Burd I, Lei J. Maternal siRNA silencing of placental SAA2 mitigates preterm birth following intrauterine inflammation. Front Immunol 2022; 13: 902096
  • 67 Lui NS, Guo HH, Sung AW, Peterson A, Kulkarni VN. Single-lumen endotracheal tube and bronchial blocker for airway management during tracheobronchoplasty for tracheobronchomalacia: a case report. A A Pract 2019; 13 (06) 236-239
  • 68 Han S, Zhao F, Hsia J. et al. The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo. J Cell Sci 2021; 134 (13) 134
  • 69 Cano PA, Mora LC, Enríquez I, Reis MS, Martínez E, Barturen F. One-lung ventilation with a bronchial blocker in thoracic patients. BMC Anesthesiol 2023; 23 (01) 398
  • 70 Sankaran D, Hirose S, Null DM, Ravula NR, Lakshminrusimha S. Novel use of a bronchial blocker in a challenging case of congenital diaphragmatic hernia-a case report. Children (Basel) 2021; 8 (12) 8
  • 71 Takechi K, Sanki Y, Abe K, Shimizu I. One-lung ventilation using a laryngeal mask airway and bronchial blocker in a patient with vocal cord cancer: a case report. JA Clin Rep 2022; 8 (01) 22
  • 72 Dong D, Zhang Y, Reece EA, Wang L, Harman CR, Yang P. microRNA expression profiling and functional annotation analysis of their targets modulated by oxidative stress during embryonic heart development in diabetic mice. Reprod Toxicol 2016; 65: 365-374
  • 73 Zhao Y, Dong D, Reece EA, Wang AR, Yang P. Oxidative stress-induced miR-27a targets the redox gene nuclear factor erythroid 2-related factor 2 in diabetic embryopathy. Am J Obstet Gynecol 2018; 218 (01) 136.e1-136.e10
  • 74 Dong D, Fu N, Yang P. MiR-17 downregulation by high glucose stabilizes thioredoxin-interacting protein and removes thioredoxin inhibition on ASK1 leading to apoptosis. Toxicol Sci 2016; 150 (01) 84-96
  • 75 Gu H, Yu J, Dong D, Zhou Q, Wang JY, Yang P. The miR-322-TRAF3 circuit mediates the pro-apoptotic effect of high glucose on neural stem cells. Toxicol Sci 2015; 144 (01) 186-196
  • 76 Ramya S, Shyamasundar S, Bay BH, Dheen ST. Maternal diabetes alters expression of microRNAs that regulate genes critical for neural tube development. Front Mol Neurosci 2017; 10: 237
  • 77 Shyamasundar S, Jadhav SP, Bay BH. et al. Analysis of epigenetic factors in mouse embryonic neural stem cells exposed to hyperglycemia. PLoS ONE 2013; 8 (06) e65945
  • 78 Santos C, Murray A, Marshall AR. et al. Spinal Neural Tube Formation and Regression in Human Embryos. Cold Spring Harbor Laboratory; 2023
  • 79 Krishnan A, Samtani R, Dhanantwari P. et al. A detailed comparison of mouse and human cardiac development. Pediatr Res 2014; 76 (06) 500-507
  • 80 VanOudenhove J, Yankee TN, Wilderman A, Cotney J. Epigenomic and transcriptomic dynamics during human heart organogenesis. Circ Res 2020; 127 (09) e184-e209