Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(19): 2246-2250
DOI: 10.1055/a-2382-3010
DOI: 10.1055/a-2382-3010
letter
Iron(III) Triflate and γ-Cyclodextrin-Catalyzed Hydroarylation of Alkenes with 1-Naphthols and 2-Naphthols
This research was supported by Zhejiang Provincial Natural Science Foundation (Grant No.LY23B040001) and Programs Supported by Ningbo Natural Science Foundation (Grant No.202003N4009).

Abstract
A Fe(OTf)3 and γ-cyclodextrin-catalyzed hydroarylation of alkenes with 1-naphthols or 2-naphthols is demonstrated. This efficient and general method delivers a wide range of benzylic naphthols from readily available starting materials with high chemo- and regioselectivity in up to 99% yield, with no need for a strong base or additive.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2382-3010.
- Supporting Information
Publication History
Received: 28 June 2024
Accepted after revision: 07 August 2024
Accepted Manuscript online:
07 August 2024
Article published online:
04 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Wu S, Dong J, Zhou D, Wang W, Liu L, Zhou Y. J. Org. Chem. 2020; 85: 14307
- 2 Ammar YA, Salem MA, Fayed EA, Helal MH, El-Gaby MS. A, Thabet HK. Synth. Commun. 2017; 47: 1341
- 3 Das B, Reddy CR, Kashanna J, Mamidyala SK, Kumar CG. Med. Chem. Res. 2012; 21: 3321
- 4 Ash J, Ahmed E, Le N, Huang H, Kang JY. New J. Chem. 2024; 48: 4224
- 5a Mohan DC, Patil RD, Adimurthy S. Eur. J. Org. Chem. 2012; 3520
- 5b Das B, Krishnaiah M, Laxminarayana K, Damodar K, Kumar DN. Chem. Lett. 2009; 38: 42
- 5c Velasco-Rubio Á, Martin R. Adv. Synth. Catal. 2024; 366: 593
- 5d Jose J, Mathew TV. Adv. Synth. Catal. 2023; 365: 4334
- 5e Kwon Y, Wang Q. Chem. Asian J. 2022; 17: e202200215
- 5f Dada R, Singh G, Pareek A, Kausar S, Yaragorla S. Tetrahedron Lett. 2016; 57: 3739
- 6a Carrión MC, Cole-Hamilton DJ. Chem. Commun. 2006; 4527
- 6b Dorta R, Togni A. Chem. Commun. 2003; 760
- 6c Kuninobu Y, Matsuki T, Takai K. J. Am. Chem. Soc. 2009; 131: 9914
- 7a Mahindaratne MP. D, Wimalasena K. J. Org. Chem. 1998; 63: 2858
- 7b Evano G, Theunissen C. Angew. Chem., Int. Ed. Engl. 2019; 58: 7202
- 7c Evano G, Theunissen C. Angew. Chem., Int. Ed. Engl. 2019; 58: 7558
- 7d Rueping M, Nachtsheim BJ. Beilstein J. Org. Chem. 2010; 6: 6
- 7e Babu KR, Chen S, Li Y, Bao H. Youji Huaxue 2017; 37: 1160
- 7f Duan S, Jana R, Tunge JA. J. Org. Chem. 2009; 74: 4612
- 7g Kischel J, Jovel I, Mertins K, Zapf A, Beller M. Org. Lett. 2006; 8: 19
- 7h Yadav JS, Reddy BV. S, Sengupta S, Biswas SK. Synthesis 2009; 1301
- 7i Buu-Hoï NP, Bihan HL, Binon F. J. Org. Chem. 1952; 17: 243
- 7j Lee SY, Villani-Gale A, Eichman CC. Org. Lett. 2016; 18: 5034
- 7k Rueping M, Nachtsheim BJ, Scheidt T. Org. Lett. 2006; 8: 3717
- 7l Patil RD, Joshi G, Adimurthy S. Monatsh. Chem. 2010; 141: 1093
- 7m Zhang Q, Chan Y.-Y, Zhang M, Yeung Y.-Y, Ke Z. Angew. Chem. Int. Ed. Engl. 2022; 61: e202208009
- 7n Qi C, Gandon V, Lebœuf D. Angew. Chem., Int. Ed. Engl. 2018; 57: 14245
- 8a Hu F, Patel M, Luo F, Flach C, Mendelsohn R, Garfunkel E, He H, Szostak M. J. Am. Chem. Soc. 2015; 137: 14473
- 8b Haldar S, Koner S. J. Org. Chem. 2010; 75: 6005
- 8c Reddy KM, Babu NS, Prasad PS, Lingaiah N. Catal. Commun. 2008; 9: 2525
- 8d Varghese S, Nagarajan S, Benzigar MR, Mano A, Alothman ZA, Raj GA. G, Vinu A. Tetrahedron Lett. 2012; 53: 1485
- 8e Vinu A, Devassy BM, Halligudi S, Böhlmann W, Hartmann M. Appl. Catal., A 2005; 281: 207
- 8f Rueping M, Bootwicha T, Sugiono E. Adv. Synth. Catal. 2010; 352: 2961
- 9a Rana S, Biswas JP, Paul S, Paik A, Maiti D. Chem. Soc. Rev. 2021; 50: 243
- 9b Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Chem. Soc. Rev. 2022; 51: 7358
- 9c Liu Y, You T, Wang H.-X, Tang Z, Zhou C.-Y, Che C.-M. Chem. Soc. Rev. 2020; 49: 5310
- 9d Kato Y, Yoshino T, Matsunaga S. ACS Catal. 2023; 13: 4552
- 9e Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
- 10 Huang J, Chen L.-L, Ding T.-M, Chen Z.-M. Org. Chem. Front. 2023; 10: 461
- 12a Xiao E.-K, Wu X.-T, Ma F, Feng X, Chen P, Jiang Y.-J. Org. Lett. 2021; 23: 449
- 12b Xiao E.-K, Wu X.-T, Ma F, Miao L.-W, Jiang Y.-J, Chen P. Chem. Commun. 2021; 57: 7148
- 12c Miao L.-W, Chen P, Hu M.-X, Yin J, Du H, Jiang Y.-J. Adv. Synth. Catal. 2024; 366: 2226
- 13a Wang B, Bols M. Chem. Eur. J. 2017; 23: 13766
- 13b Kshirsagar UA, Parnes R, Goldshtein H, Ofir R, Zarivach R, Pappo D. Chem. Eur. J. 2013; 19: 13575
- 14 Benzylic Naphthols 3aa–fa and 4aa–ca; General ProcedureA oven-dried Schlenk tube was sequentially charged with the appropriate naphthol (0.125 mmol), γ-cyclodextrin (32.4 mg, 0.025 mmol), Fe(OTf)3 (12.8 mg, 0.025 mmol), and DCE (2.0 mL), and the resulting mixture was stirred at 60 °C for 5 min. The appropriate alkene substrate (0.1875 mmol, 1.5 equiv) was then added, and the mixture was stirred at 60 °C for 4–8 h until the reaction was complete (TLC). The mixture was cooled to r.t. and the reaction was quenched with sat. aq NaHCO3 (40 mL). The resultant mixture was extracted with EtOAc (2 × 40 mL), and the combined organic extracts were washed with sat. brine (30 mL), dried (Na2SO4), and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, hexane–EtOAc).1-(1-Phenylethyl)-2-naphthol (3aa)Yellow oil; yield: 27.9 mg (90%). 1H NMR (500 MHz, CDCl3): d = 8.02 (d, J = 8.5 Hz, 1 H), 7.78 (dd, J = 8.5, 1.5 Hz, 1 H), 7.64 (d, J = 9.0 Hz, 1 H), 7.46–7.41 (m, 1 H), 7.37 (d, J = 8.0 Hz, 2 H), 7.34–7.28 (m, 3 H), 7.24–7.23 (m, 1 H), 6.97 (d, J = 8.5 Hz, 1 H), 5.16 (q, J = 7.5 Hz, 1 H), 4.93 (s, 1 H), 1.76 (d, J = 7.5 Hz, 3 H).1-[1-(4-tert-Butylphenyl)ethyl]-2-naphthol (3ae)White solid; yield: 31.9 mg (84%). 1H NMR (400 MHz, CDCl3): d = 8.04 (d, J = 8.4 Hz, 1 H), 7.76 (dd, J = 8.0, 1.6 Hz, 1 H), 7.62 (d, J = 8.8 Hz, 1 H), 7.46–7.41 (m, 1 H), 7.33–7.29 (m, 5 H), 6.97 (d, J = 8.8 Hz, 1 H), 5.14–5.04 (m, 2 H), 1.74 (d, J = 7.6 Hz, 3 H), 1.28 (s, 9 H). 13C NMR (151 MHz, CDCl3): d = 151.8, 149.9, 140.4, 133.0, 129.8, 129.0, 128.8, 127.0, 126.7, 126.2, 123.9, 123.2, 122.7, 119.6, 34.5, 31.4, 17.3.