Subscribe to RSS
DOI: 10.1055/a-2382-0292
Nickel-Catalyzed Radical Hydroalkylative Dearomatization of Indoles with Alkyl Bromides
Financial support for this work was provided by the National Natural Science Foundation of China (22201291, 21821002, 22261132511, and 22031012), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2023000046), and the Science and Technology Commission of Shanghai Municipality (22JC1401103 and 2023000285). S.-L.Y. acknowledges support from the New Cornerstone Science Foundation.

Abstract
Dearomatization of indole derivatives offers a straightforward approach to accessing the indoline framework. However, highly efficient dearomatization of indoles bearing electron-deficient groups remains underdeveloped. Herein, a nickel-catalyzed intermolecular hydroalkylative dearomatization reaction of indoles with simple alkyl bromides through a single-electron-transfer process is reported. A wide variety of indole derivatives bearing various functional groups were compatible with this protocol and reacted with primary, secondary, or tertiary alkyl bromides to afford a series of indolines in good yields (up to 82%) and with excellent diastereoselectivity (up to >20:1). Notably, a nickel-mediated hydrogen-atom-transfer process was observed when terminal alkyl bromides were employed as the radical precursors, which resulted in branched products.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2382-0292.
- Supporting Information
Publication History
Received: 23 July 2024
Accepted after revision: 07 August 2024
Accepted Manuscript online:
07 August 2024
Article published online:
04 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Somei M, Yamada F. Nat. Prod. Rep. 2005; 22: 73
- 1b Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
- 1c Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 1d Bartoli G, Bencivenni G, Dalpozzo R. Chem. Soc. Rev. 2010; 39: 4449
- 1e Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 1f Palmieri A, Petrini M. Nat. Prod. Rep. 2019; 36: 490
- 2a Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
- 2b Zheng C, You S.-L. Nat. Prod. Rep. 2019; 36: 1589
- 2c Nieto MJ, Lupton HK. Curr. Med. Chem. 2021; 28: 4828
- 3a Ding Q, Zhou X, Fan R. Org. Biomol. Chem. 2014; 12: 4807
- 3b Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
- 3c Denizot N, Tomakinian T, Beaud R, Kouklovsky C, Vincent G. Tetrahedron Lett. 2015; 56: 4413
- 3d Roche SP, Youte Tendoung J.-J, Tréguier B. Tetrahedron 2015; 71: 3549
- 3e Manoni E, De Nisi A, Bandini M. Pure Appl. Chem. 2016; 88: 207
- 3f Abou-Hamdan H, Kouklovsky C, Vincent G. Synlett 2020; 31: 1775
- 3g Sheng F.-T, Wang J.-Y, Tan W, Zhang Y.-C, Shi F. Org. Chem. Front. 2020; 7: 3967
- 3h Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
- 4a Wang L, Shao Y, Liu Y. Org. Lett. 2012; 14: 3978
- 4b Awata A, Arai T. Angew. Chem. Int. Ed. 2014; 53: 10462
- 4c Trost BM, Ehmke V, O’Keefe BM, Bringley DA. J. Am. Chem. Soc. 2014; 136: 8213
- 4d Kubota K, Hayama K, Iwamoto H, Ito H. Angew. Chem. Int. Ed. 2015; 54: 8809
- 4e Rivinoja DJ, Gee YS, Gardiner MG, Ryan JH, Hyland CJ. T. ACS Catal. 2017; 7: 1053
- 4f Wu J, Dou Y, Guillot R, Kouklovsky C, Vincent G. J. Am. Chem. Soc. 2019; 141: 2832
- 4g Wang H, Zhang J, Tu Y, Zhang J. Angew. Chem. Int. Ed. 2019; 58: 5422
- 4h Xie J.-H, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2021; 60: 22184
- 4i Huang X.-L, Cheng Y.-Z, You S.-L. Org. Chem. Front. 2022; 9: 5463
- 4j Zhang W.-Y, Wang H.-C, Wang Y, Zheng C, You S.-L. J. Am. Chem. Soc. 2023; 145: 10314
- 5a An J, Zou YQ, Yang Q.-Q, Wang Q, Xiao W.-J. Adv. Synth. Catal. 2013; 355: 1483
- 5b Zhang C, Li S, Bures F, Lee R, Ye X, Jiang Z. ACS Catal. 2016; 6: 6853
- 5c Ma J, Schäfers F, Daniliuc C, Bergander K, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2020; 59: 9639
- 5d Dong W, Yuan Y, Xie X, Zhang Z. Org. Lett. 2020; 22: 528
- 5e Gao X, Yuan Y, Xie X, Zhang Z. Chem. Commun. 2020; 56: 14047
- 5f Wu L, Hao Y, Liu Y, Song H, Wang Q. Chem. Commun. 2020; 56: 8436
- 5g Zhou W.-J, Wang Z.-H, Liao L.-L, Jiang Y.-X, Cao K.-G, Ju T, Li Y, Cao G.-M, Yu D.-G. Nat. Commun. 2020; 11: 3263
- 5h McDaniel KA, Blood AR, Smith GC, Jui NT. ACS Catal. 2021; 11: 4968
- 5i Gao Y, Wang H, Chi Z, Yang L, Zhou C, Li G. CCS Chem. 2022; 4: 1565
- 6 Huang X.-L, Cheng Y.-Z, Zhang X, You S.-L. Org. Lett. 2020; 22: 9699
- 7 Zhang Y, Ji P, Gao F, Huang H, Zeng F, Wang W. ACS Catal. 2021; 11: 998
- 8 Varlet T, Bouchet D, Van Elslande E, Masson G. Chem. Eur. J. 2022; 28: e202201707
- 9 Chang X, Zhang F, Zhu S, Yang Z, Feng X, Liu Y. Nat. Commun. 2023; 14: 3876
- 10 Diccianni J, Lin Q, Diao T. Acc. Chem. Res. 2020; 53: 906
- 11a Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Chem. Rev. 2022; 122: 5842
- 11b Terao J, Nii S, Chowdhury FA, Nakamura A, Kambe N. Adv. Synth. Catal. 2004; 346: 905
- 11c Zhou J, Fu GC. J. Am. Chem. Soc. 2004; 126: 1340
- 11d Schley ND, Fu GC. J. Am. Chem. Soc. 2014; 136: 16588
- 11e Fu GC. ACS Cent. Sci. 2017; 3: 692
- 11f Wang Z, Yin H, Fu GC. Nature 2018; 563: 379
- 11g Yin H, Fu GC. J. Am. Chem. Soc. 2019; 141: 15433
- 11h Schwarzwalder GM, Matier CD, Fu GC. Angew. Chem. Int. Ed. 2019; 58: 3571
- 11i Tu H.-Y, Wang F, Huo L, Li Y, Zhu S, Zhao X, Li H, Qing F.-L, Chu L. J. Am. Chem. Soc. 2020; 142: 9604
- 11j Wei X, Shu W, García-Domínguez A, Merino E, Nevado C. J. Am. Chem. Soc. 2020; 142: 13515
- 11k Wang X.-X, Lu X, He S.-J, Fu Y. Chem. Sci. 2020; 11: 7950
- 11l Li H, Wang F, Zhu S, Chu L. Angew. Chem. Int. Ed. 2022; 61: e202116725
- 11m Tong X, Schneck F, Fu GC. J. Am. Chem. Soc. 2022; 144: 14856
- 11n Wang Y.-Z, Sun B, Zhu X.-Y, Gu Y.-C, Ma C, Mei T.-S. J. Am. Chem. Soc. 2023; 145: 23910
- 11o Lux DM, Aryal V, Niroula D, Giri R. Angew. Chem. Int. Ed. 2023; 62: e202305522
- 11p Liu S, Zhang D, Zhang X, Cheng Y, Deng H. Org. Chem. Front. 2023; 10: 4359
- 12 Zhou J, Fu GC. J. Am. Chem. Soc. 2004; 126: 1340
- 13 Wang Z, Yin H, Fu GC. Nature 2018; 563: 379
- 14 Li P, Kou G, Feng T, Wang M, Qiu Y. Angew. Chem. Int. Ed. 2023; 62: e202311941
- 15 Radical Hydroalkylative Dearomatization; General Procedure A flame-dried sealed tube was charged with Ni(ClO4)2·6 H2O (7.3 mg, 0.02 mmol, 10 mol%), ligand L1 (4.4 mg, 0.024 mmol, 12 mol%), and DMA (1 mL), and the resulting mixture was stirred for 10 min. The appropriate indole derivative 1 (0.2 mmol, 1.0 equiv), alkyl bromide 2 (0.7 mmol, 3.5 equiv), and Mn powder (27.5 mg, 0.5 mmol, 2.5 equiv) were added. The mixture was thoroughly degassed by three freeze–pump–thaw cycles and then stirred for 4 h at r.t. The tube was then placed in a glove box and additional 2 (0.2 mmol, 1.0 equiv) was added. The mixture was then stirred for another 24 h until the reaction was complete (TLC). The mixture was filtered through a short column of silica gel, which was washed with EtOAc, and the organic phase was concentrated in vacuo to afford a crude product. The dr values were determined by 1H NMR analysis of the crude product, which was then subjected to further purification by column chromatography [silica gel, PE–EtOAc (15:1 to 10:1)]. Methyl (trans)-1-Acetyl-3-isopropylindoline-2-carboxylate (3aa) Yellow oil; yield: 42.9 mg (82%, >20:1 dr). IR (thin film): 2955, 2922, 2853, 1748, 1666, 1597, 1461, 1392, 1281, 1253, 1200, 1027, 996, 755 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.22 and 7.13 (d, J = 8.0 Hz, 1 H), 7.27–7.16 (m, 2 H), 7.06–7.02 (m, 1 H), 4.94 and 4.58 (d, J = 2.4 Hz, 1 H), 3.76 and 3.71 (s, 3 H), 3.30 and 3.15 (dd, J = 4.8, 2.4 Hz, 1 H), 2.48 and 2.17 (s, 3 H), 2.09–1.96 (m, 1 H), 1.02 (d, J = 6.8 Hz, 3 H), 0.83 and 0.80 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 172.0, 168.6, 168.4, 141.4, 133.9, 131.3, 128.4, 128.1, 125.9, 124.5, 123.8, 123.3, 117.2, 113.8, 64.4, 62.9, 52.9, 52.5, 52.4, 50.2, 33.5, 33.2, 24.5, 23.8, 19.5, 17.8, 17.5. HRMS (ESI): m/z [M + Na]+ calcd for C15H19NNaO3: 284.1257; found: 284.1257.
For selected reviews on heterocyclic compounds, see:
For reviews on dearomatization of indole derivatives, see:
For selected examples on electrophilic dearomatization, see:
For selected examples on photocatalyzed dearomatization of indoles, see:
For a recent review on nickel-catalyzed radical reactions, see:
For selected examples on nickel-catalyzed radical reactions, see: