Sportverletz Sportschaden
DOI: 10.1055/a-2365-9612
Case report

Treatment of Arthrogenic-Muscle-Inhibition in patients after knee-surgery with Motion-Activated-Neuromuscular stimulation – a case-series

Behandlung der arthrogenen Muskelhemmung bei Patienten nach kniechirurgischen Eingriffen mit bewegungsaktivierter neuromuskulärer Stimulation – eine Fallserie
Christian Schoepp
1   Klinik für Arthroskopische Chrirurgie, Sporttraumatologie und Sportmedizin, BG Klinikum Duisburg, Duisburg, GERMANY (Ringgold ID: RIN39748)
,
Jörg Dickschas
2   Klinik für Orthopädie und Unfallchirurgie, Klinikum Bamberg, Bamberg, GERMANY (Ringgold ID: RIN301864)
,
Arno Schmeling
3   Sporthopaedicum Berlin, Berlin, GERMANY
,
Florian Perwanger
4   Orthoplus Bozen, Bozen, ITALY
,
Kaywan Izadpanah
5   Universitätsklinikum Freiburg Chirurgische Universitatsklinik: Universitatsklinikum Freiburg Department Chirurgie, Freiburg, GERMANY (Ringgold ID: RIN72082)
,
Arthur Praetorius
6   Klinik für Arthroskopische Chirurgie, Sportraumatologie und Sportmedizin, BG Klinikum Duisburg, Duisburg, GERMANY (Ringgold ID: RIN39748)
› Author Affiliations

Abstract

Arthrogenic muscle inhibition (AMI) presents a persistent challenge in postoperative knee rehabilitation and is often resistant to standard care. This case series examines the efficacy of Motion-Activated Neuromuscular Electrical Stimulation (mNMES) in addressing AMI refractory to rehabilitation after ACL (revision) surgery, patellar dislocation, trochleoplasty, or conservative treatment of the patellofemoral pain syndrome. Eight patients who had undergone extensive unsuccessful rehabilitation received six weeks of a novel mNMES treatment regimen. Outcome assessments included patient-reported outcome measures (PROMs) and AMI classification. Results revealed significant improvements in pain reduction, knee function, and AMI reduction. Despite study limitations, mNMES demonstrated promising outcomes and could be used as an adjunct to standard rehabilitation, offering potential for enhancing postoperative outcomes in patients refractory to conventional therapy. Further research is required to validate these findings and optimise treatment protocols.

Zusammenfassung

Die arthrogene Muskelhemmung (AMI) stellt eine anhaltende Herausforderung in der postoperativen Knie-Rehabilitation dar und ist oft refraktär gegenüber der konservativen Standardbehandlung. In dieser Fallserie wird die Wirksamkeit einer bewegungsaktivierten neuromuskulären Elektrostimulation (mNMES) bei persistierender AMI untersucht, die sich nach einer VKB (-Revisions) -Operation, Patellaluxation, Trochleoplastik oder konservativen Behandlung des patellofemoralen Schmerzsyndroms entwickelt hat. Acht Patienten, die eine umfangreiche trainingstherapeutische Rehabilitation absolviert hatten, unterzogen sich 6 Wochen lang der neuartigen mNMES-Behandlung. Die Ergebnisse wurden anhand von Fragebogeninstrumenten (PROMs) und der Änderung der AMI-Klassifizierung im Prä-post-Vergleich bewertet. Die Ergebnisse zeigten signifikante Verbesserungen bei der Schmerzreduktion, der Kniefunktion und der AMI-Reduktion. Trotz der Limitationen dieser Studie zeigte mNMES vielversprechende Ergebnisse und könnte als Ergänzung zur Standardrehabilitation eingesetzt werden, um die postoperativen Ergebnisse bei Patienten zu verbessern, die auf eine konventionelle Therapie nicht ansprechen. Weitere Untersuchungen sind erforderlich, um diese Ergebnisse zu bestätigen und die Behandlungsprotokolle zu optimieren.



Publication History

Received: 16 May 2024

Accepted after revision: 15 July 2024

Article published online:
04 September 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Anand M. et al. Integrated 3D motion analysis with functional magnetic resonance neuroimaging to identify neural correlates of lower extremity movement. J Neurosci Methods 2021; 355: 109108
  • 2 Bonnette S. et al. Electrocortical dynamics differentiate athletes exhibiting low- and high- ACL injury risk biomechanics. Psychophysiology 2020; 57 (04) e13530
  • 3 Criss CR, Onate JA, Grooms DR. Neural activity for hip-knee control in those with anterior cruciate ligament reconstruction: A task-based functional connectivity analysis. Neurosci Lett 2020; 730: 134985
  • 4 Gribbin TC. et al. Differences in hip-knee joint coupling during gait after anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2016; 32: 64-71
  • 5 Grooms DR. et al. Neuroplasticity Associated With Anterior Cruciate Ligament Reconstruction. J Orthop Sports Phys Ther 2017; 47 (03) 180-189
  • 6 Hart JM. et al. Quadriceps activation following knee injuries: a systematic review. J Athl Train 2010; 45 (01) 87-97
  • 7 Kaur M. et al. Movement Patterns of the Knee During Gait Following ACL Reconstruction: A Systematic Review and Meta-Analysis. Sports Med 2016; 46 (12) 1869-1895
  • 8 Pietrosimone B. et al. Arthrogenic Muscle Inhibition Following Anterior Cruciate Ligament Injury. J Sport Rehabil 2022; 31 (06) 694-706
  • 9 Alsaleh SA. et al. Local neuromuscular characteristics associated with patellofemoral pain: A systematic review and meta-analysis. Clin Biomech (Bristol, Avon) 2021; 90: 105509
  • 10 Nunes GS. et al. Effectiveness of Interventions Aimed at Changing Movement Patterns in People With Patellofemoral Pain: A Systematic Review With Network Meta-analysis. J Orthop Sports Phys Ther 2023; 53 (12) 1-13
  • 11 Seeley MK. et al. Anterior knee pain independently alters landing and jumping biomechanics. Clin Biomech (Bristol, Avon) 2021; 89: 105458
  • 12 Ong MT. et al. Assessments of early patellofemoral joint osteoarthritis features after anterior cruciate ligament reconstruction: a cross-sectional study. BMC Musculoskelet Disord 2023; 24 (01) 510
  • 13 Callaghan MJ. et al. Factors associated with arthrogenous muscle inhibition in patellofemoral osteoarthritis. Osteoarthritis Cartilage 2014; 22 (06) 742-746
  • 14 Lepley AS, Lepley LK. Mechanisms of Arthrogenic Muscle Inhibition. J Sport Rehabil 2022; 31 (06) 707-716
  • 15 Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum 2010; 40 (03) 250-266
  • 16 Moroder P. et al. Neuromuscular Electrical Stimulation-Enhanced Physical Therapist Intervention for Functional Posterior Shoulder Instability (Type B1): A Multicenter Randomized Controlled Trial. Phys Ther 2023; DOI: 10.1093/ptj/pzad145.
  • 17 Moroder P. et al. Shoulder-Pacemaker Treatment Concept for Posterior Positional Functional Shoulder Instability: A Prospective Clinical Trial. Am J Sports Med 2020; 48 (09) 2097-2104
  • 18 Moroder P. et al. Use of shoulder pacemaker for treatment of functional shoulder instability: Proof of concept. Obere Extrem 2017; 12 (02) 103-108
  • 19 Danzinger V, Schulz E, Moroder P. Epidemiology of functional shoulder instability: an online survey. BMC Musculoskelet Disord 2019; 20 (01) 281
  • 20 Akpinar B. et al. Clinical and Biomechanical Outcomes following Knee Extensor Mechanism Reconstruction. Arthrosc Sports Med Rehabil 2020; 2 (05) e553-e561
  • 21 Sood I, Sen S, Arfath U. Effect of electrical muscle stimulation with voluntary contraction and taping on joint position sense in asymptomatic scapular dyskinesic patients. International journal of physical medicine & rehabilitation 2014; 2: 1-6
  • 22 Walker DL, Hickey CJ, Tregoning MB. THE EFFECT OF ELECTRICAL STIMULATION VERSUS SHAM CUEING ON SCAPULAR POSITION DURING EXERCISE IN PATIENTS WITH SCAPULAR DYSKINESIS. Int J Sports Phys Ther 2017; 12 (03) 425-436
  • 23 Uschok S. et al. Reverse shoulder arthroplasty: the role of physical therapy on the clinical outcome in the mid-term to long-term follow-up. Arch Orthop Trauma Surg 2018; 138 (10) 1347-1352
  • 24 Reinold MM. et al. The effect of neuromuscular electrical stimulation of the infraspinatus on shoulder external rotation force production after rotator cuff repair surgery. Am J Sports Med 2008; 36 (12) 2317-2321
  • 25 Sonnery-Cottet B. et al. Arthrogenic muscle inhibition after ACL reconstruction: a scoping review of the efficacy of interventions. Br J Sports Med 2019; 53 (05) 289-298
  • 26 Schauer T. Sensing motion and muscle activity for feedback control of functional electrical stimulation: Ten years of experience in Berlin. Annual Reviews in Control 2017; 44: 355-374
  • 27 Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 2001; 81 (04) 1725-1789
  • 28 Reddy H. et al. Altered cortical activation with finger movement after peripheral denervation: comparison of active and passive tasks. Exp Brain Res 2001; 138 (04) 484-491
  • 29 van Dijk H, Jannink MJ, Hermens HJ. Effect of augmented feedback on motor function of the affected upper extremity in rehabilitation patients: a systematic review of randomized controlled trials. J Rehabil Med 2005; 37 (04) 202-211
  • 30 Ng GY, Zhang AQ, Li CK. Biofeedback exercise improved the EMG activity ratio of the medial and lateral vasti muscles in subjects with patellofemoral pain syndrome. J Electromyogr Kinesiol 2008; 18 (01) 128-133
  • 31 Christanell F. et al. The influence of electromyographic biofeedback therapy on knee extension following anterior cruciate ligament reconstruction: a randomized controlled trial. Sports Med Arthrosc Rehabil Ther Technol 2012; 4 (01) 41
  • 32 Loudon D. et al. Developing visualisation software for rehabilitation: investigating the requirements of patients, therapists and the rehabilitation process. Health Informatics J 2012; 18 (03) 171-180
  • 33 Zeni JJr. et al. Biofeedback to promote movement symmetry after total knee arthroplasty: a feasibility study. J Orthop Sports Phys Ther 2013; 43 (10) 715-726
  • 34 Grooms DR. et al. Visual-Motor Control of Drop Landing After Anterior Cruciate Ligament Reconstruction. J Athl Train 2018; 53 (05) 486-496
  • 35 Labanca L. et al. Neuromuscular Electrical Stimulation Superimposed on Movement Early after ACL Surgery. Med Sci Sports Exerc 2018; 50 (03) 407-416
  • 36 Labanca L. et al. Early Superimposed NMES Training is Effective to Improve Strength and Function Following ACL Reconstruction with Hamstring Graft regardless of Tendon Regeneration. J Sports Sci Med 2022; 21 (01) 91-103
  • 37 Gottlieb U. et al. Exercise combined with electrical stimulation for the treatment of chronic ankle instability – A randomized controlled trial. J Electromyogr Kinesiol 2024; 74: 102856
  • 38 Byl NN, Pitsch EA, Abrams GM. Functional outcomes can vary by dose: learning-based sensorimotor training for patients stable poststroke. Neurorehabil Neural Repair 2008; 22 (05) 494-504
  • 39 Myles PS. et al. Measuring acute postoperative pain using the visual analog scale: the minimal clinically important difference and patient acceptable symptom state. Br J Anaesth 2017; 118 (03) 424-429
  • 40 Campbell WI, Patterson CC. Quantifying meaningful changes in pain. Anaesthesia 1998; 53 (02) 121-125
  • 41 Zatterstrom R. et al. Early rehabilitation of acute anterior cruciate ligament injury--a randomized clinical trial. Scand J Med Sci Sports 1998; 8 (03) 154-159
  • 42 D'Ambrosi R. et al. Multiple revision anterior cruciate ligament reconstruction: not the best but still good. Knee Surg Sports Traumatol Arthrosc 2023; 31 (02) 559-571
  • 43 Esculier JF, Roy JS, Bouyer LJ. Psychometric evidence of self-reported questionnaires for patellofemoral pain syndrome: a systematic review. Disabil Rehabil 2013; 35 (26) 2181-2190
  • 44 Liu JN. et al. Establishing Clinically Significant Outcomes After Meniscal Allograft Transplantation. Orthop J Sports Med 2019; 7 (01) 2325967118818462
  • 45 Dammerer D. et al. Validation of the German version of the Kujala score in patients with patellofemoral instability: a prospective multi-centre study. Arch Orthop Trauma Surg 2018; 138 (04) 527-535
  • 46 Giles L. et al. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. Br J Sports Med 2017; 51 (23) 1688-1694
  • 47 Sappey-Marinier E. et al. Clinical Outcomes and Predictive Factors for Failure With Isolated MPFL Reconstruction for Recurrent Patellar Instability: A Series of 211 Reconstructions With a Minimum Follow-up of 3 Years. Am J Sports Med 2019; 47 (06) 1323-1330
  • 48 Walsh JM. et al. The Minimal Clinically Important Difference, Substantial Clinical Benefit, and Patient-Acceptable Symptomatic State after Medial Patellofemoral Ligament Reconstruction. Arthrosc Sports Med Rehabil 2022; 4 (02) e661-e678
  • 49 Sonnery-Cottet B. et al. Arthrogenic Muscle Inhibition Following Knee Injury or Surgery: Pathophysiology, Classification, and Treatment. Video Journal of Sports Medicine 2022; 2 (03) DOI: 10.1177/26350254221086295.
  • 50 Norte G, Rush J, Sherman D. Arthrogenic Muscle Inhibition: Best Evidence, Mechanisms, and Theory for Treating the Unseen in Clinical Rehabilitation. J Sport Rehabil 2022; 31 (06) 717-735
  • 51 Nandedkar SD, Barkhaus PE, Stålberg EV. Motor unit number index (MUNIX): principle, method, and findings in healthy subjects and in patients with motor neuron disease. Muscle Nerve 2010; 42 (05) 798-807