Subscribe to RSS
DOI: 10.1055/a-2365-3900
Tissue Determinants of Antiviral Immunity in the Liver
Gewebespezifische Faktoren zur Regulation der antiviralen Immunität in der Leber Supported by: Deutsche Forschungsgemeinschaft 272983813 - TRR179Abstract
The liver is an organ bearing important metabolic and immune functions. Hepatocytes are the main metabolically active cells of the liver and are the target of infection by hepatotropic viruses. Virus-specific CD8 T cells are essential for the control of hepatocyte infection with hepatotropic viruses but may be subject to local regulation of their effector function. Here, we review our current knowledge of the tissue determinants of antiviral immunity in the liver. Liver Sinusoidal Endothelial Cells (LSECs) not only allow through their fenestrations the access of circulating virus-specific CD8 T cells to engage in direct contact with infected hepatocytes without the need for extravasation but also cross-present viral antigens released from infected hepatocytes to these CD8 T cells. Two important features of LSECs and hepatocytes contribute to antiviral immune surveillance and liver failure. First, CD8 T cell immunity targeting LSECs leads to widespread endothelial cell death and results in sinusoidal microcirculation failure, causing fulminant viral hepatitis, whereas immune-mediated loss of hepatocytes is rapidly compensated by the regenerative capacity of the liver. Second, virus-infected hepatocytes support clearance of infection by responding to TNF, which is released from virus-specific CD8 T cells, with the selective induction of apoptosis. This increased sensitivity for TNF-induced death is caused by reduced mitochondrial resilience in virus-infected hepatocytes and may assist antiviral immunity in preferential targeting of virus-infected hepatocytes. Thus, hepatocytes and LSECs actively contribute to the outcome of antiviral CD8 T cell immunity in the liver. The knowledge of the mechanisms determining CD8 T cell control of hepatotropic viral infection will help to improve strategies to increase antiviral immune surveillance.
Zusammenfassung
Die Leber ist ein Organ mit wichtigen Stoffwechsel- und Immunfunktionen. Hepatozyten, die Parenchymzellen der Leber, sind die stoffwechselaktiven Zellen und das Ziel der Infektion von hepatotropen Viren. Virus-spezifische CD8-T-Zellen sind für die Kontrolle dieser Virus-Infektionen unerlässlich, ihre Effektorfunktion ist jedoch einer lokalen Regulation unterlegen. In diesem Review fassen wir den aktuellen Wissenstand über die Mechanismen der Regulation der Immunantworten zusammen. Sinusoidale Endothelzellen der Leber (LSEC = Liver Sinusoidal Endothelial Cells) ermöglichen durch ihre Fenestrae nicht nur den Zugang zirkulierender virus-spezifischer CD8-T-Zellen zu Hepatozyten, ohne dass eine Extravasation erforderlich ist. Sie kreuz-präsentieren auch virale Antigene, welche von infizierten Hepatozyten sezerniert wurden, an CD8-T-Zellen. Zwei wichtige Eigenschaften von LSEC und Hepatozyten tragen zur Immunüberwachung und zum Leberversagen bei. Erstens führt eine gegen LSEC gerichtete CD8-T-Zell-Immunantwort zu einem Absterben der Endothelzellen und in dessen Verlauf zu einem Versagen der hepatischen Mikrozirkulation, was zu einer fulminanten Virushepatitis führt, während der immunvermittelte Verlust von Hepatozyten durch die Regenerationsfähigkeit der Leber kompensiert wird. Zweitens unterstützen Virus-infizierte Hepatozyten die Beseitigung der Infektion, indem sie auf TNF, welches von Virus-spezifischen CD8-T-Zellen sezerniert wird, mit der spezifischen Induktion von Apoptose reagieren. Diese erhöhte Sensitivität gegenüber TNF-induziertem Zelltod virusinfizierter Hepatozyten wird durch eine verringerte mitochondriale Resilienz verursacht und kann die Effizienz der antiviralen Immunität fördern. Hepatozyten und LSEC spielen somit eine aktive Rolle während der antiviralen Immunität in der Leber. Eine genaue Kenntnis über die Mechanismen, welche die CD8-T-Zell-Effektorfunktion gegen eine Virusinfektion der Leber regulieren, kann dazu beitragen, Strategien zur Verbesserung der antiviralen Immunität zu verbessern.
Publication History
Received: 04 September 2024
Accepted after revision: 13 November 2024
Article published online:
10 January 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Knolle PA, Gerken G. Local control of the immune response in the liver. Immunol Rev 2000; 174: 21-34
- 2 Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010; 10: 753-766
- 3 Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol 2009; 27: 147-163
- 4 Gupta P, Suryadevara M, Das A. Cytomegalovirus-induced hepatitis in an immunocompetent patient. Am J Case Rep 2014; 15: 447-449
- 5 Mendez-Sanchez N, Aguilar-Dominguez C, Chavez-Tapia NC. et al. Hepatic manifestations of Epstein-Barr viral infection. Ann Hepatol 2005; 4: 205-209
- 6 Wang WH, Wang HL. Fulminant adenovirus hepatitis following bone marrow transplantation. A case report and brief review of the literature. Arch Pathol Lab Med 2003; 127: e246-248
- 7 Gane EJ. et al. Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N Engl J Med 2013; 368: 34-44
- 8 Wiktor SZ, Hutin YJ. The global burden of viral hepatitis: better estimates to guide hepatitis elimination efforts. Lancet 2016; 388: 1030-1031
- 9 Thomas DL. Global Elimination of Chronic Hepatitis. N Engl J Med 2019; 380: 2041-2050
- 10 Thimme R. et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 2003; 77: 68-76
- 11 Pallett LJ. et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat Med 2015; 21: 591-600
- 12 Guidotti LG. et al. Immunosurveillance of the liver by intravascular effector CD8(+) T cells. Cell 2015; 161: 486-500
- 13 Fisicaro P. et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat Med 2017; 23: 327-336
- 14 Benechet AP. et al. Dynamics and genomic landscape of CD8(+) T cells undergoing hepatic priming. Nature 2019; 574: 200-205
- 15 Kurts C, Robinson BW, Knolle PA. Cross-priming in health and disease. Nat Rev Immunol 2010; 10: 403-414
- 16 Kurts C, Kosaka H, Carbone FR. et al. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J Exp Med 1997; 186: 239-245
- 17 Jung S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 2002; 17: 211-220
- 18 Hildner K. et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008; 322: 1097-1100
- 19 Eickhoff S. et al. Robust Anti-viral Immunity Requires Multiple Distinct T Cell-Dendritic Cell Interactions. Cell 2015; 162: 1322-1337
- 20 Sorensen KK. et al. The scavenger endothelial cell: a new player in homeostasis and immunity. Am J Physiol Regul Integr Comp Physiol 2012; 303: R1217-1230
- 21 Wittlich M. et al. Liver sinusoidal endothelial cell cross-priming is supported by CD4 T cell-derived IL-2. J Hepatol 2017; 66: 978-986
- 22 Carambia A. et al. Inhibition of inflammatory CD4 T cell activity by murine liver sinusoidal endothelial cells. J Hepatol 2013; 58: 112-118
- 23 Carambia A. et al. Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. J Hepatol 2015; 62: 1349-1356
- 24 Bottcher JP. et al. Liver-primed memory T cells generated under noninflammatory conditions provide anti-infectious immunity. Cell reports 2013; 3: 779-795
- 25 Kern M. et al. Virally infected mouse liver endothelial cells trigger CD8+ T-cell immunity. Gastroenterology 2010; 138: 336-346
- 26 Bertolino P, Trescol-Biemont MC, Rabourdin-Combe C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 1998; 28: 221-236
- 27 Holz LE. et al. Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology 2008; 135: 989-997
- 28 Benseler V. et al. Hepatocyte entry leads to degradation of autoreactive CD8 T cells. Proc Natl Acad Sci U S A 2011; 108 (40) 16735-16740
- 29 Holz LE, Warren A, Le Couteur DG. et al. CD8+ T cell tolerance following antigen recognition on hepatocytes. Journal of autoimmunity 2010; 34: 15-22
- 30 De Simone G. et al. Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming. Immunity 2021; 54: 2089-2100 e2088
- 31 Wieland SF, Spangenberg HC, Thimme R. et al. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc Natl Acad Sci U S A 2004; 101: 2129-2134
- 32 Baumann T. et al. Regulatory myeloid cells paralyze T cells through cell–cell transfer of the metabolite methylglyoxal. Nature Immunology 2020; 21: 555-566
- 33 Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 2002; 1: 1
- 34 Wong J. et al. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J Clin Invest 1997; 99: 2782-2790
- 35 Warren A. et al. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology (Baltimore, Md) 2006; 44: 1182-1190
- 36 Wieland SF, Chisari FV. Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol 2005; 79: 9369-9380
- 37 Welz M. et al. Perforin inhibition protects from lethal endothelial damage during fulminant viral hepatitis. Nat Commun 2018; 9: 4805
- 38 Manske K. et al. In Vivo Bioluminescence Imaging of HBV Replicating Hepatocytes Allows for the Monitoring of Anti-Viral Immunity. Viruses 2021; 13 (11) 2273
- 39 Weigelin B. et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nature Communications 2021; 12: 5217
- 40 Halle S, Halle O, Förster R. Mechanisms and Dynamics of T Cell-Mediated Cytotoxicity In Vivo. Trends in Immunology 2017; 38: 432-443
- 41 Zhang N, Bevan MJ. CD8+ T Cells: Foot Soldiers of the Immune System. Immunity 2011; 35: 161-168
- 42 Lampl S. et al. Reduced mitochondrial resilience enables non-canonical induction of apoptosis after TNF receptor signaling in virus-infected hepatocytes. J Hepatol 2020; 73: 1347-1359
- 43 Wohlleber D. et al. TNF-induced target cell killing by CTL activated through cross-presentation. Cell reports 2012; 2: 478-487
- 44 Gainey MD, Rivenbark JG, Cho H. et al. Viral MHC class I inhibition evades CD8+ T-cell effector responses in vivo but not CD8+ T-cell priming. Proceedings of the National Academy of Sciences 2012; 109: E3260-E3267
- 45 Gong Y-N. et al. ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences. Cell 2017; 169: 286-300.e216
- 46 Ritter AT. et al. ESCRT-mediated membrane repair protects tumor-derived cells against T cell attack. Science 2022; 376: 377-382
- 47 Plümpe J. et al. NF-κB determines between apoptosis and proliferation in hepatocytes during liver regeneration. American Journal of Physiology-Gastrointestinal and Liver Physiology 2000; 278: G173-G183
- 48 Tan X, Sun L, Chen J. et al. Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Annual Review of Microbiology 2018; 72: 447-478
- 49 Newton K, Strasser A, Kayagaki N. et al. Cell death. Cell 2024; 187: 235-256
- 50 Wiesner RJ, Ruegg JC, Morano I. Counting target molecules by exponential polymerase chain reaction: copy number of mitochondrial DNA in rat tissues. Biochem Biophys Res Commun 1992; 183: 553-559
- 51 Jost PJ. et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 2009; 460: 1035-1039
- 52 Schneider A. et al. Single organelle analysis to characterize mitochondrial function and crosstalk during viral infection. Sci Rep 2019; 9: 8492
- 53 De Stefani D, Rizzuto R, Pozzan T. Enjoy the Trip: Calcium in Mitochondria Back and Forth. Annu Rev Biochem 2016; 85: 161-192
- 54 Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 2018; 19: 713-730
- 55 Baughman JM. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 2011; 476: 341-345