Synthesis 2024; 56(20): 3206-3214
DOI: 10.1055/a-2359-8813
paper

Selective Synthesis of Deuterated cis- and trans-Isohumulones and trans-Isohumulinones

Bruce C. Hamper
,
Hunter J. Campbell
,
Rensheng Luo
,
Matthew Murphy
,
Patrick Gleason
,
Trevor Smith
,
Rajamoni Jagan
We gratefully thank Merck & Co, Inc, Process Research & Development, Rahway, NJ, USA for financial support.


Abstract

Deuterated isohumulones can be prepared directly from humulones by an acyloin ring contraction under either magnesium-catalyzed basic conditions or by photochemical-induced reactions in deuterated solvents. Reactions of humulones with biphasic methylene chloride/aqueous NaOD and MgSO4 in D2O leads to stereoselective formation of cis-d 3-isohumulones (cis/trans ratio of 82:18) as the magnesium salts in yields of 71–83%. Greater than 95% incorporation of three deuterons is observed at the C5 position of the pentenone ring and the methylene position of the C4 acyl group. Photochemical isomerization with a 400 nm blue LED source enables stereospecific formation of deuterated trans-isohumulones in 36–82% yield with greater than 95% incorporation of deuterium at the C5 ring position. Oxidation of humulones with cumene hydroperoxide in basic D2O gives isohumulinones with partial 55–73% incorporation of deuterium due to keto–enol isomerization of the methylene substituent of the C4 acyl group. The structural identities of the deuterated products are determined by a combination of negative-mode electrospray mass spectrometry (MS-ESI–) and 2D heteronuclear proton–carbon HMQC NMR analysis.

Supporting Information



Publikationsverlauf

Eingereicht: 16. Februar 2024

Angenommen nach Revision: 03. Juli 2024

Accepted Manuscript online:
03. Juli 2024

Artikel online veröffentlicht:
22. Juli 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a De Keukeleire D. J. Am. Soc. Brew. Chem. 2017; 75: 283
    • 1b Almaguer C, Schonberger C, Gastl M, Arendt E, Becker T. J. Inst. Brew. 2014; 120: 289
    • 1c Moir M. J. Am. Soc. Brew. Chem. 2000; 58: 131
  • 2 Verzele M, De Keukeleire D. Chemistry and Analysis of Hops and Beer . In Developments in Food Science, Vol. 27. Elsevier; Amsterdam: 1991: 1-43
  • 3 Hieronymus S. For the Love of Hops . Brewers Publications; Boulder: 2012: 131-173
    • 4a Lafontaine S, Senn K, Dennenlohr J, Schubert C, Knoke L, Maxminer AC, Rettberg N, Heymann H. ACS Omega 2020; 5: 23308
    • 4b Buckett L, Schinko S, Urmann C, Riepl H, Rychlik M. Front. Nutr. 2020; 7: 619020
    • 4c Hagemann MH, Bogner K, Marchioni E, Braun S. Brew. Sci. 2016; 69: 50
    • 5a Hamper BC, Viriyasiri N, Boland A, Espinosa L, Campbell HJ, McKeever M. LC-GC North Am. 2021; 39: 329
    • 5b Hamper BC, Zawatzky K, Zhang V, Welch CJ. J. Am. Soc. Brew. Chem. 2017; 75: 333
    • 6a Barth R. The Chemistry of Beer . John Wiley & Sons; New Jersey: 2022: 9-10
    • 6b Briggs DE, Boulton CA, Brookes PA, Stevens R. Brewing Science and Practice. Chap. 7 and 17. Cambridge: CRC Press; 2004
    • 6c Verzele M. J. Inst. Brew. 1986; 92: 32
    • 7a Hurth Z, Faber M.-L, Gendrisch F, Holzer M, Haarhaus B, Cawelius A, Schwabe K, Schempp CM, Wolfle U. Pharmaceuticals 2022; 15: 350
    • 7b Lin M, Xiang D, Chen X, Huo H. J. Agric. Food Chem. 2019; 67: 8291
    • 7c Karabin M, Hudcova T, Jelinek L, Dostalek P. Compr. Rev. Food Sci. Food Saf. 2016; 15: 542
    • 7d Van Cleemput M, Cattoor K, De Bosscher K, Haegeman G, De Keukeleire D, Heyerick A. J. Nat. Prod. 2009; 72: 1220
    • 7e Koetter U, Biendl M. J. Amer. Bot. Council 2010; 87: 44
  • 8 Sun S, Wang X, Yuan A, Liu J, Li Z, Xie D, Zhan H, Luo W, Xu H, Liu J, Nie C, Zhang H. Food Energy Secur. 2021; 11: e367
    • 9a Ponticelli M, Russo D, Faraone I, Sinisgalli C, Labanca F, Lela L, Milella L. Molecules 2021; 26: 954
    • 9b Ayabe T, Ohya R, Taniguchi Y, Shindo K, Kondo K, Ano Y. Nat. Sci. Rep. 2018; 8: 15372
  • 10 Benkherouf AY, Eerola K, Soini SL, Uusi-Oukari M. Front. Neurosci. 2020; 14: 594708
  • 11 Mahli A, Koch A, Fresse K, Schiergens T, Thasler WE, Schonberger C, Bergheim I, Bosserhoff A, Hellerbrand C. Lab Invest. 2018; 98: 1614
    • 12a Bland JS, Minich D, Lerman R, Darland G, Lamb J, Tripp M, Grayson N. PharmaNutrition 2015; 3: 46
    • 12b Yajima H, Ikeshima E, Shiraki M, Kanaya T, Fujiwara D, Odai H, Tsuboyama-Kasaoka N, Ezaki O, Oikawa S, Kondo K. J. Biol. Chem. 2004; 279: 33456
  • 13 Ano Y, Dohata A, Taniguchi Y, Hoshi A, Uchida K, Takashima A, Nakayama H. J. Biol. Chem. 2017; 292: 3720
  • 14 Kern PA, Finlin BS, Ross D, Boyechko T, Zhu B, Grayson N, Sims R, Bland JS. J. Endocr. Soc. 2017; 1: 650
    • 15a Bland J, Grayson N, Wolfe A, Wu S. WO2018/191522, 2018
    • 15b Finlin BS, Zhu B, Kok BP, Godio C, Westgate PM, Grayson N, Sims R, Bland JS, Saez E, Kern PA. Front. Endocrinol. 2017; 8: 255
  • 16 Mahli A, Thasler WE, Biendl M, Hellerbrand C. Planta Med. 2023; 89: 1138
  • 17 Chokkathukalam A, Kim D.-H, Barrett MP, Breitling R, Creek DJ. Bioanalysis 2014; 6: 511
    • 18a Ocvirk M, Ogrinc N, Kosir IJ. J. Agric. Food Chem. 2018; 66: 2021
    • 18b Steinhaus M, Fritsch HT, Schieberle P. J. Agric. Food Chem. 2003; 51: 7100
  • 19 Goese M, Kammhuber K, Bacher A, Zenk MH, Eisenreich W. Eur. J. Biochem. 1999; 263: 447
  • 20 Intelmann D, Demmer O, Desmer N, Hofmann T. J. Agric. Food Chem. 2009; 57: 11014
  • 21 Burton JS, Stevens R, Elvidge JA. J. Inst. Brew. 1964; 70: 345
  • 22 Verzele M, Claus H, Van Dyck J. J. Inst. Brew. 1967; 73: 39
  • 23 Ting PL, Kay S, Ryder D. J. Inst. Brew. 2009; 67: 152
  • 24 Simpson WJ. J. Inst. Brew. 1993; 99: 317
  • 25 Hermans-Lokkerbol AC. J, Hoek AC, Verpoorte R. J. Chromatogr. 1997; 771: 71
  • 26 Verzele M, Steenbeke G, Verhagen LC, Strating J. J. Chromatogr. 1989; 484: 361
  • 27 Jaskula-Goiris B, De Cooman L, Goiris K. Brew. Sci. 2018; 71: 85
  • 28 Verzele M, Van Boven M. Bull. Soc. Chim. Belg. 1971; 80: 677
    • 29a Jakcula B, Kararski P, Aerts G, De Cooman L. J. Agric. Food Chem. 2008; 56: 6408
    • 29b Malowicki MG, Shelhammer TH. J. Agric. Food Chem. 2005; 53: 4434
    • 30a Steenackers B, De Cooman L, De Vos D. Food Chem. 2015; 172: 742
    • 30b Verzele M, De Keukeleire D. Chemistry and Analysis of Hops and Beer . In Developments in Food Science, Vol. 27. Elsevier; Amsterdam: 1991: 88-126
    • 30c Köller H. J. Inst. Brew. 1969; 75: 175
    • 30d Köller H. Tetrahedron Lett. 1968; 4317
  • 31 Sharpe FR, Ormrod IH. L. J. Inst. Brew. 1991; 97: 33
    • 32a Taniguchi Y, Matsukura Y, Ozaki H, Nishimura K, Shindo K. J. Agric. Food Chem. 2013; 61: 3121
    • 32b Intelmann D, Haseleu G, Hofmann H. J. Agric. Food Chem. 2009; 57: 1172
  • 33 Maye JP, Mulqueen S, Weis S, Xu J, Priest M. J. Am. Soc. Brew. Chem. 1999; 57: 55
  • 34 Urban J, Dahlberg CJ, Carroll BJ, Kaminsky W. Angew. Chem. Int. Ed. 2013; 52: 1553
  • 35 Brown PM, Howard GA, Tatchell AR. J. Chem. Soc. 1959; 112: 545
  • 36 Clarke BJ, Hildebrand RP. J. Inst. Brew. 1965; 71: 26
  • 37 Cook AH, Harris G. J. Chem. Soc. 1950; 381: 1873
  • 38 Intelmann D, Kummerlöwe G, Haseleu G, Desmer N, Schulze K, Fröhlich R, Frank O, Luy B, Hofmann T. Chem. Eur. J. 2009; 15: 13047
  • 39 Hamper BC, Meisel JW. J. Chem. Educ. 2020; 97: 1289
  • 40 Cook AH, Howard GA, Slater CA. J. Inst. Brew. 1955; 61: 321