Klin Monbl Augenheilkd 2024; 241(08): 905-916
DOI: 10.1055/a-2349-2158
Übersicht

Characterisation of Intraocular Lens Injectors

Charakterisierung von Intraokularlinsen-Injektoren
Maximilian Friedrich
David J. Apple International Laboratory for Ocular Pathology, Department of Ophthalmology, University Hospital Heidelberg, Germany
,
Donald J. Munro
David J. Apple International Laboratory for Ocular Pathology, Department of Ophthalmology, University Hospital Heidelberg, Germany
,
Gerd U. Auffarth
David J. Apple International Laboratory for Ocular Pathology, Department of Ophthalmology, University Hospital Heidelberg, Germany
,
David J. Apple International Laboratory for Ocular Pathology, Department of Ophthalmology, University Hospital Heidelberg, Germany
› Institutsangaben

Abstract

In modern ophthalmic surgery, an intraocular lens (IOL) is commonly implanted into the patientʼs eye with an IOL injector. Many injectors are available, showing various technological differences, from the early manually loaded injector systems to the modern preloaded injectors. This review aims to give a concise overview of the defining characteristics of injector models and draws attention to complications that may occur during IOL implantation. One can differentiate injectors according to their preoperative preparation (manually loaded or preloaded), their implantation mechanism (push-type or screw-type or combined or automated), the size of the nozzle tip, the presence of an insertion depth control feature, and the injectorʼs reusability. Potential complications are IOL misconfigurations such as a haptic-optic adhesion, adherence of the IOL to the injector plunger, an overriding plunger, uncontrolled IOL rotation, a trapped trailing haptic, or damage to the IOL. Additionally, during IOL implantation, the nozzle can become damaged with scratches, extensions, cracks, or bursts to the tip. While these complications rarely produce long-term consequences, manufacturers should try to prevent them by further improving their devices. Similarly, surgeons should evaluate new injectors carefully to ensure the highest possible surgical safety.

Zusammenfassung

In der modernen Augenchirurgie wird eine Intraokularlinse (IOL) i. d. R. mithilfe eines IOL-Injektors in das Auge implantiert. Es gibt eine Vielzahl von Injektoren, die sich technologisch unterscheiden, von den frühen manuell zu ladenden Injektorsystemen bis hin zu den moderneren vorgeladenen IOL-Injektoren. Dieser Übersichtsartikel soll einen prägnanten Überblick über die charakteristischen Merkmale der unterschiedlichen Injektormodelle geben und auf Komplikationen aufmerksam machen, die während der IOL-Implantation auftreten können. Die Injektoren lassen sich nach ihrer präoperativen Vorbereitung (manuell geladen oder vorgeladen), ihrem Implantationsmechanismus (Druck- oder Schraubmechanismus, eine Kombination von beidem oder ein Automatismus), der Größe der Injektorspitze, dem Vorhandensein einer Funktion zur Kontrolle der Einführtiefe und der Wiederverwendbarkeit des Injektors unterscheiden. Zu den potenziellen Komplikationen gehören Fehlkonfigurationen der IOL, wie z. B. eine Haptik-Optik-Adhäsion, ein Anhaften der IOL am Kolben des Injektors, ein vorbeischiebender Injektorkolben, eine unkontrollierte IOL-Rotation, eine eingeklemmte Haptik oder eine Beschädigung der IOL. Darüber hinaus kann die Injektorspitze während der IOL-Implantation durch Kratzer, Ausdehnungen, Risse oder Aufplatzen der Spitze beschädigt werden. Obwohl diese Komplikationen selten langfristige Folgen haben, sollten die Hersteller versuchen, das Auftreten von Komplikationen durch weitere Verbesserungen der Injektoren zu verhindern. In der Zwischenzeit sollten Chirurgen vor der IOL-Implantation die IOL-Injektor-Systeme genaustens begutachten, um eine größtmögliche chirurgische Sicherheit zu gewährleisten.



Publikationsverlauf

Eingereicht: 24. Oktober 2023

Angenommen: 19. Juni 2024

Artikel online veröffentlicht:
15. August 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zhang JY, Feng YF, Cai JQ. Phacoemulsification versus manual small-incision cataract surgery for age-related cataract: meta-analysis of randomized controlled trials. Clin Experiment Ophthalmol 2013; 41: 379-386
  • 2 Dick B, Kohnen T, Jacobi KW. [Endothelial cell loss after phacoemulsification and 3.5 vs. 5 mm corneal tunnel incision]. Ophthalmologe 1995; 92: 476-483
  • 3 Kohnen T, Dick B, Jacobi KW. Comparison of the induced astigmatism after temporal clear corneal tunnel incisions of different sizes. J Cataract Refract Surg 1995; 21: 417-424
  • 4 Mehtha KR. Phakoemulsification cataract extraction with foldable IOLs-first 50 cases. Indian J Ophthalmol 1989; 37: 80-83
  • 5 Usui M, Tanaka T. Resistance force for intraocular lens insertion through lens cartridges and syringe-type injectors. J Cataract Refract Surg 2015; 41: 1745-1751
  • 6 Kohnen T. Incision sizes with 5.5 mm total optic, 3-piece foldable intraocular lenses. J Cataract Refract Surg 2000; 26: 1765-1772
  • 7 Kohnen T, Koch DD. Experimental and clinical evaluation of incision size and shape following forceps and injector implantation of a three-piece high-refractive-index silicone intraocular lens. Graefes Arch Clin Exp Ophthalmol 1998; 236: 922-928
  • 8 Kohnen T, Lambert RJ, Koch DD. Incision sizes for foldable intraocular lenses. Ophthalmology 1997; 104: 1277-1286
  • 9 Mencucci R, Dei R, Danielli D. et al. Folding procedure for acrylic intraocular lenses. J Cataract Refract Surg 2004; 30: 457-463
  • 10 Weston K, Nicholson R, Bunce C. et al. An 8-year retrospective study of cataract surgery and postoperative endophthalmitis: injectable intraocular lenses may reduce the incidence of postoperative endophthalmitis. Br J Ophthalmol 2015; 99: 1377-1380
  • 11 Mayer E, Cadman D, Ewings P. et al. A 10 year retrospective survey of cataract surgery and endophthalmitis in a single eye unit: injectable lenses lower the incidence of endophthalmitis. Br J Ophthalmol 2003; 87: 867-869
  • 12 Szurman P, Petermeier K, Jaissle GB. et al. A new small-incision technique for injector implantation of transsclerally sutured foldable lenses. Ophthalmic Surg Lasers Imaging 2007; 38: 76-80
  • 13 Mayer C, Tandogan T, Hoffmann AE. et al. Artificial iris implantation in various iris defects and lens conditions. J Cataract Refract Surg 2017; 43: 724-731
  • 14 Mittal V, Rathod D, Sehdev N. Bowman-stromal inlay using an intraocular lens injector for management of keratoconus. J Cataract Refract Surg 2021; 47: e49-e55
  • 15 Sud R, Sharma P, Takkar B. et al. Modified intraocular lens injector assisted rescue technique for failed viscoexpression in a case of intracameral cysticercosis. Indian J Ophthalmol 2020; 68: 932-934
  • 16 Schallhorn JM, Holiman JD, Stoeger CG. et al. Quantification and Patterns of Endothelial Cell Loss Due to Eye Bank Preparation and Injector Method in Descemet Membrane Endothelial Keratoplasty Tissues. Cornea 2016; 35: 377-382
  • 17 Espiritu CR, Bernardo jr. JP. Incision sizes at different stages of phacoemulsification with foldable intraocular lens implantation. J Cataract Refract Surg 2009; 35: 2115-2120
  • 18 Kohnen T, Klaproth OK. Incision sizes before and after implantation of SN60WF intraocular lenses using the monarch injector system with C and D cartridges. J Cataract Refract Surg 2008; 34: 1748-1753
  • 19 Tsuneoka H, Hayama A, Takahama M. Ultrasmall-incision bimanual phacoemulsification and AcrySof SA30AL implantation through a 2.2 mm incision. J Cataract Refract Surg 2003; 29: 1070-1076
  • 20 Coombes AG, Sheard R, Gartry DS. et al. Silicone plate-haptic lens injection without prior incision enlargement. J Cataract Refract Surg 2001; 27: 1542-1544
  • 21 Arshinoff S. Ultimate soft-shell technique and AcrySof Monarch injector cartridges. J Cataract Refract Surg 2004; 30: 1809-1810
  • 22 Borkenstein AF, Borkenstein EM. [Safety First – Evaluation of IOL Injector Systems]. Klin Monbl Augenheilkd 2019; 236: 976-982
  • 23 Jones JJ, Chu J, Graham J. et al. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery. Clin Ophthalmol 2016; 10: 1123-1129
  • 24 Ouchi M. Effect of intraocular lens insertion speed on surgical wound structure. J Cataract Refract Surg 2012; 38: 1771-1776
  • 25 Allen D, Habib M, Steel D. Final incision size after implantation of a hydrophobic acrylic aspheric intraocular lens: new motorized injector versus standard manual injector. J Cataract Refract Surg 2012; 38: 249-255
  • 26 Weindler JN, Naujokaitis T, Schickhardt SK. et al. Injection time related to intraocular pressure using a CO2 driven preloaded injector: An experimental laboratory study. PLoS One 2021; 16: e0254901
  • 27 Khoramnia R, Yildirim TM, Weindler J. et al. Preloaded injectors used in a clinical study: videographic assessment and laboratory analysis of injector nozzle damage. J Cataract Refract Surg 2021; 47: 1338-1344
  • 28 Khokhar S, Sharma R, Patil B. et al. Comparison of new motorized injector vs. manual injector for implantation of foldable intraocular lenses on wound integrity: an ASOCT study. Eye (Lond) 2014; 28: 1174-1178
  • 29 Cennamo M, Favuzza E, Salvatici MC. et al. Effect of manual, preloaded, and automated preloaded injectors on corneal incision architecture after IOL implantation. J Cataract Refract Surg 2020; 46: 1374-1380
  • 30 Titiyal JS, Basak SK, Shetty N. et al. Twelve-Months Follow-Up Postmarket Study of a Hydrophobic Intraocular Lens Using a Preloaded Automated Injector in an Indian Population. Clin Ophthalmol 2022; 16: 4215-4225
  • 31 Friedrich M, Baur ID, Yildirim TM. et al. Laboratory analysis of causative factors for the final incision size due to intraocular lens injector insertion. Ophthalmol Sci 2023; 4: 100356
  • 32 Zhang L, Schickhardt S, Fang H. et al. Comparison of a new intraocular lens injector system against 3 standard intraocular lens injector systems with different incision sizes: a Miyake-Apple view experimental laboratory study. J Cataract Refract Surg 2021;
  • 33 Fang H, Zhang L, Schickhardt S. et al. A laboratory evaluation of nozzle tip damage in four generations of intraocular lens injector systems using a self-developed damage scale. Sci Rep 2022; 12: 2723
  • 34 Arboleda A, Arrieta E, Aguilar MC. et al. Variations in intraocular lens injector dimensions and corneal incision architecture after cataract surgery. J Cataract Refract Surg 2019; 45: 656-661
  • 35 Zhang L, Schickhardt S, Merz P. et al. Nozzle tip damage in three generations of intraocular lens injector models: an experimental laboratory study. BMC Ophthalmol 2023; 23: 7
  • 36 Kleinmann G, Kleinmann I. Intraocular lens injector-induced stress on the corneal incisions during lens implantation. Am J Ophthalmol 2014; 158: 185-191.e1
  • 37 Matsuura K, Inoue Y. Ophthalmic viscosurgical device backflow into cartridge during intraocular lens insertion using injectors. Clin Ophthalmol 2014; 8: 321-325
  • 38 Nanavaty MA, Kubrak-Kisza M. Evaluation of preloaded intraocular lens injection systems: ex vivo study. J Cataract Refract Surg 2017; 43: 558-563
  • 39 Guarnieri A, Moreno-Montañés J, Sabater AL. et al. Final incision size after cataract surgery with toric intraocular lens implantation using 2 techniques. J Cataract Refract Surg 2013; 39: 1675-1681
  • 40 Friedrich M, Auffarth GU, Merz PR. Experimental analysis of recommended corneal incision sizes in cataract surgery using 13 intraocular lens injector systems. Sci Rep 2023; 13: 2659
  • 41 Khoramnia R, Baur ID, Łabuz G. et al. Enlargement of main corneal incision: clinical intraindividual comparison of two preloaded intraocular lens injectors. J Cataract Refract Surg 2023; 49: 165-170
  • 42 Yildirim TM, Łabuz G, Baur ID. et al. Corneal incision enlargement in two preloaded intraocular lens injectors: an intraindividual in vivo study. J Refract Surg 2021; 37: 331-336
  • 43 Mastropasqua L, Toto L, DʼUgo E. et al. In vivo and in vitro results of an automated preloaded delivery system for IOL implantation in cataract surgery. Int Ophthalmol 2020; 40: 125-134
  • 44 Eckelman MJ, Sherman J. Environmental Impacts of the U.S. Health Care System and Effects on Public Health. PLoS One 2016; 11: e0157014
  • 45 Morris DS, Wright T, Somner JE. et al. The carbon footprint of cataract surgery. Eye (Lond) 2013; 27: 495-501
  • 46 Mencucci R, Ponchietti C, Nocentini L. et al. Scanning electron microscopic analysis of acrylic intraocular lenses for microincision cataract surgery. J Cataract Refract Surg 2006; 32: 318-323
  • 47 Mendicute J, Amzallag T, Wang L. et al. Comparison of incision size and intraocular lens performance after implantation with three preloaded systems and one manual delivery system. Clin Ophthalmol 2018; 12: 1495-1503
  • 48 Oshika T, Wolfe P. In vitro comparison of delivery performance of 4 preloaded intraocular lens injector systems for corneal and sclerocorneal incisions. J Cataract Refract Surg 2019; 45: 840-846
  • 49 Harsum S, Low S. Reversed vaulted AcrySof intraocular lens presenting as pupillary block. Eye (Lond) 2009; 23: 1880-1882
  • 50 Khokhar S, Banerjee M, Bhayana AA. et al. Simple technique to avoid inadvertent upside-down implantation of multipiece IOL with injector. BMJ Case Rep 2021; 14: e241364
  • 51 Ong HS, Subash M, Sandhu A. et al. Intraocular lens delivery characteristics of the preloaded AcrySof IQ SN60WS/AcrySert injectable lens system. Am J Ophthalmol 2013; 156: 77-81.e2
  • 52 Chuah JL, Rajesh CV. Intraoperative fracture of AMO Clariflex silicone posterior chamber IOL. J Cataract Refract Surg 2005; 31: 1260-1261
  • 53 Mohammed BR, Perry SR. Silicone lens fracture using IOL injector. J Cataract Refract Surg 2006; 32: 548
  • 54 Oshika T, Sasaki N. Experimental Study on Delivery Performance of an Automated Preloaded Intraocular Lens Injector System for Corneal and Sclerocorneal Incisions. J Ophthalmol 2021; 2021: 5548493
  • 55 Stefaniu I, Nita N, Lazar S. et al. [Acrylic IOL implantation with the Monarch II injector]. Oftalmologia 2003; 59: 42-45
  • 56 Yao A, Liu H. Delivery Characteristics of the Preloaded POB-MA 877PA Intraocular Lens System: Comparison of 2 Incision Sizes. Asia Pac J Ophthalmol (Phila) 2019; 8: 233-235
  • 57 Oetting TA, Beaver HA. Protecting the haptic when a Monarch injector is used. J Cataract Refract Surg 2005; 31: 258-259
  • 58 Habib NE, Singh J, Adams AD. et al. Cracked cartridges during foldable intraocular lens implantation. J Cataract Refract Surg 1996; 22: 630-632
  • 59 Takeshita T, Yamada K, Tanihara H. Single-action implantation of a 3-piece acrylic intraocular lens with an injector. J Cataract Refract Surg 2003; 29: 246-249
  • 60 Hesse Y, Freissler KA, Lang GK. [Scanning electron microscopic study of 12 lenses of two types of soft acrylic intraocular lenses]. Klin Monbl Augenheilkd 2001; 218: 682-687
  • 61 Faschinger CW. Surface abnormalities on hydrophilic acrylic intraocular lenses implanted by an injector. J Cataract Refract Surg 2001; 27: 845-849
  • 62 Häring G, Winter M, Behrendt S. Effect of folding on the multifocal silicone intraocular lens: scanning electron microscopic study. J Cataract Refract Surg 1999; 25: 1505-1509
  • 63 Khan IJ, Abbott J, Bhatnager AJ. et al. Three-haptic intraocular lens for myopia: early results. J Cataract Refract Surg 2010; 36: 1161-1166
  • 64 Harsum S, Mann S, Clatworthy I. et al. An investigation of intraocular lens damage and foreign bodies using an injectable hydrophilic acrylic lens implant. Eye (Lond) 2010; 24: 152-157
  • 65 Bedar MS, Kellner U. [Clinical experience with the Clareon IOL and the AutonoMe implantation system]. Ophthalmologe 2020; 117: 1100-1104
  • 66 Fukami S, Yamamoto N, Murakami K. Intraocular lens roll-up technique: foldable IOL implantation using forceps through incisions smaller than 3.2 mm. J Cataract Refract Surg 2007; 33: 2023-2027
  • 67 Mathys KC, Cohen KL, Bagnell CR. Identification of unknown intraocular material after cataract surgery: evaluation of a potential cause of toxic anterior segment syndrome. J Cataract Refract Surg 2008; 34: 465-469
  • 68 Kleinmann G, Apple DJ. Evaluation of a new soft tipped injector for the implantation of foldable intraocular lenses. Br J Ophthalmol 2007; 91: 1070-1072
  • 69 Baur ID, Łabuz G, Chychko L. et al. In vivo comparison of implantation behavior and laboratory analysis of two preloaded intraocular lens injectors. Eur J Ophthalmol 2023; 34: 766-773
  • 70 Faschinger CW. Plastic foreign body as part of the injector. J Cataract Refract Surg 2000; 26: 478-479
  • 71 Biswas P, Sengupta S, Paul A. et al. Descemetʼs tear due to injector cartridge tip deformity. Indian J Ophthalmol 2012; 60: 218-220