Synlett
DOI: 10.1055/a-2347-1143
letter

Earth-Abundant Metal-Catalyzed Cross-Coupling Reactions of 1-Bromocyclobut-1-enes with Grignard Reagents

Tomohiro Yasukawa
a   ESPCI Paris – PSL, CNRS, 10 Rue Vauquelin, 75005 Paris, France
,
Katja S. Håheim
a   ESPCI Paris – PSL, CNRS, 10 Rue Vauquelin, 75005 Paris, France
,
Julien Boutet
b   Seqens SAS, 21 Chemin de la Sauvegarde, 21 Ecully Parc, Ecully 69130, France
,
Pierre Gilles
c   Proteus by Seqens, 70 Allée Graham Bell, Parc Georges Besse, 30035 Nîmes Cedex 1, France
,
Juliette Martin
c   Proteus by Seqens, 70 Allée Graham Bell, Parc Georges Besse, 30035 Nîmes Cedex 1, France
,
Janine Cossy
a   ESPCI Paris – PSL, CNRS, 10 Rue Vauquelin, 75005 Paris, France
› Author Affiliations


Abstract

Cross-coupling reactions have been developed between C2-substituted 1-bromocyclobut-1-enes and Grignard reagents using two effective catalysts, e.g., Fe(acac)3 and Ni(acac)2. The iron catalyst works in THF but requires NMP as the co-solvent, with the advantage of achieving cross-coupling reactions with alkyl Grignard reagents. The nickel catalyst was able to promote the reactions in THF without any additive and showed high reactivity with electron-rich aryl Grignard reagents. These catalysts gave various types of substituted cyclobutenes in good yields.

Supporting Information



Publication History

Received: 31 May 2024

Accepted after revision: 17 June 2024

Accepted Manuscript online:
17 June 2024

Article published online:
04 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Liu C, Shangguan X, Li Y, Zhang Q. Chem. Sci. 2022; 13: 7886
    • 1b Patel SC, Smith MW, Mercer JA. M, Suzuki K, Burns NZ. Org. Lett. 2021; 23: 6530
    • 2a González N, Rodríguez J, Kerr RG, Jiménez C. J. Org. Chem. 2002; 67: 5117
    • 2b Zhang L.-B, Liao H.-B, Zhu H.-Y, Yu M.-H, Lei C, Hou A.-J. Tetrahedron 2016; 72: 8036
    • 2c Cheng S.-Y, Huang K.-J, Wang S.-K, Wen Z.-H, Hsu C.-H, Dai C.-F, Duh C.-Y. Org. Lett. 2009; 11: 4830
    • 2d Bernart MW, Kashman Y, Tischler M, Cardellina JH, Boyd MR. Tetrahedron Lett. 1993; 34: 4461
    • 2e Arnone A, Nasini G, Assante G, Eijk GW. V. Phytochemistry 1992; 31: 2047
    • 3a Gauvry N, Lescop C, Huet F. Eur. J. Org. Chem. 2006; 5207
    • 3b Chen J, Zhou Q, Fang H, Lu P. Chin. J. Chem. 2022; 40: 1346
  • 4 van der Kolk M. R, Janssen MA. C. H, Rutjes FP. J. T, Blanco-Ania D. ChemMedChem 2022; 17: e202200020
    • 5a Koudelka J, Tobrman T. Eur. J. Org. Chem. 2021; 3260
    • 5b Polák P, Tobrman T. Eur. J. Org. Chem. 2019; 957
    • 5c Eisold M, Baumann AN, Kiefl GM, Emmerling ST, Dorian D. Chem. Eur. J. 2017; 23: 1634
    • 5d Liang R, Jiang H, Zhu S. Chem. Commun. 2015; 51: 5530
    • 5e Li Y, Liu X, Jiang H, Liu B, Chen Z, Zhou P. Angew. Chem. Int. Ed. 2011; 50: 6341
    • 5f Allen A, Villeneuve K, Cockburn N, Fatila E, Riddell N, Tam W. Eur. J. Org. Chem. 2008; 4178
    • 5g Villeneuve K, Riddell N, Jordan RW, Tsui GC, Tam W. Org. Lett. 2004; 6: 4543
    • 5h Feng J, Szeimies G. Tetrahedron 2000; 56: 4249
  • 6 Bai Y.-B, Luo Z, Wang Y, Gao J.-M, Zhang L. J. Am. Chem. Soc. 2018; 140: 5860
  • 7 Fürstner A, Schlecker A, Lehmann CW. Chem. Commun. 2007; 4277
    • 8a Muñoz SB. III, Daifuku SL, Sears JD, Baker TM, Carpenter SH, Brennessel WW, Neidig ML. Angew. Chem. Int. Ed. 2018; 57: 6496
    • 8b Czaplik WM, Mayer M, Cvengroš J, von Wangelin AJ. ChemSusChem 2009; 2: 396
    • 9a 1H NMR yield, internal standard CH2Br2.
    • 9b Isolated yield.
  • 10 Jones GII, Fantina ME, Pachtman AH. J. Org. Chem. 1976; 41: 329