Synthesis
DOI: 10.1055/a-2343-0780
review

Directing-Group-Assisted Transition-Metal-Catalyzed Selective BH Functionalization of o-Carboranes

Jie Zhang
a   Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin NT, Hong Kong, P. R. of China
,
Zuowei Xie
b   Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China
› Author Affiliations
Financial support from the Research Grants Council of the Hong Kong Special Administration Region (Project No. 14305420 to JZ), the Shenzhen Science and Technology Program (Project No. QTD20221101093558015 to ZX), and the National Natural Science Foundation of China (Project No. 22331005 to ZX) are gratefully acknowledged.


Abstract

Carboranes are a type of molecular clusters consisting of carbon, hydrogen, and boron atoms. They possess unique characteristics, such as three-dimensional aromaticity, icosahedral geometry, and robustness. Functionalized carboranes have been utilized in various fields, including medicine, materials, and organometallic/coordination chemistry. In this context, selective functionalization of o-carboranes has received tremendous attention, specifically in the regio- and enantioselective modification of the ten chemically similar BH vertices within the carborane cage. In recent years, significant progress has been made in catalytic vertex-specific BH functionalization, as well as achieving enantioselective functionalization of the cage BH. This review provides an overview of the recent advancements in this research field.

1 Introduction

2 Carboxy-Assisted BH Functionalization

2.1 Formation of B–C Bonds

2.2 Formation of B–N Bonds

2.3 Formation of B–O Bonds

2.4 Formation of B–X Bonds

2.5 Consecutive Formation of B–C and B–Y (Y = N, O) Bonds

3 N-Based Directing-Group-Assisted B–H Functionalization

3.1 Acylamino as a Directing Group

3.2 Amide as a Directing Group

3.3 Pyridyl as a Directing Group

3.4 Imine as a Directing Group

4 Phosphinyl-Assisted Cage B–H Functionalization

5 Bidentate-Directing-Group-Assisted B–H Functionalization

6 Other Directing-Group-Assisted B–H Functionalization

7 Conclusions



Publication History

Received: 06 May 2024

Accepted after revision: 11 June 2024

Accepted Manuscript online:
11 June 2024

Article published online:
15 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Carboranes, 3rd ed. Grimes RN. Elsevier; Oxford UK: 2016

    • For selected reviews of applications in medicine, see:
    • 2a Hawthorne MF, Maderna A. Chem. Rev. 1999; 99: 3421
    • 2b Scholz M, Hey-Hawkins E. Chem. Rev. 2011; 111: 7035
    • 2c Stockmann P, Gozzi M, Kuhnert R, Sárosi MB, Hey-Hawkins E. Chem. Soc. Rev. 2019; 48: 3497
    • 2d Tanaka H, Mitsumoto T, Hu N. J. At. Energy Soc. Jpn. 2021; 63: 657

      For selected reviews and examples of applications in materials, see:
    • 3a Núñez R, Tarrés M, Ferrer-Ugalde A, de Biani FF, Teixidor F. Chem. Rev. 2016; 116: 14307
    • 3b Fisher SP, Tomich AW, Lovera SO, Kleinsasser JF, Guo J, Asay MJ, Nelson HM, Lavallo V. Chem. Rev. 2019; 119: 8262
    • 3c Tomich AW, Chen J, Carta V, Guo J, Lavallo V. ACS Cent. Sci. 2024; 10: 264
    • 3d Tomich AW, Park J, Son SB, Kamphaus EP, Lyu X, Dogan F, Carta V, Gim J, Li T, Cheng L, Lee E, Lavallo V, Johnson CS. Angew. Chem. Int. Ed. 2022; 61: e202208158
    • 3e McArthur SG, Jay R, Geng L, Guo J, Lavallo V. Chem. Commun. 2017; 53: 4453
    • 3f McArthur SG, Geng L, Guo J, Lavallo V. Inorg. Chem. Front. 2015; 2: 1101

      For selected reviews of applications in organometallic/coordination chemistry, see:
    • 4a Xie Z. Coord. Chem. Rev. 2002; 231: 23
    • 4b Yao Z.-J, Jin G.-X. Coord. Chem. Rev. 2013; 257: 2522
    • 4c Fisher SP, Tomich AW, Guo J, Lavallo V. Chem. Commun. 2019; 55: 1684

      For reviews, see:
    • 5a Qiu Z, Ren S, Xie Z. Acc. Chem. Res. 2011; 44: 299
    • 5b Zhao D, Xie Z. Coord. Chem. Rev. 2016; 314: 14

      For reviews, see:
    • 6a Qiu Z. Tetrahedron Lett. 2015; 56: 963
    • 6b Olid D, Núñez R, Viñas C, Teixidor F. Chem. Soc. Rev. 2013; 42: 3318
    • 6c Dziedzic RM, Spokoyny AM. Chem. Commun. 2019; 55: 430
  • 7 Teixidor F, Barberà G, Vaca A, Kivekäs R, Sillanpää R, Oliva J, Viñas C. J. Am. Chem. Soc. 2005; 127: 10158
    • 8a Potenza JA, Lipscomb WN, Vickers GD, Schroeder H. J. Am. Chem. Soc. 1966; 88: 628
    • 8b Zheng Z, Knobler CB, Mortimer MD, Kong G, Hawthorne MF. Inorg. Chem. 1996; 35: 1235
    • 9a Herzog A, Maderna A, Harakas GN, Knobler CB, Hawthorne MF. Chem. Eur. J. 1999; 5: 1212
    • 9b Teixidor F, Barberà G, Viñas C, Sillanpää R, Kivekäs R. Inorg. Chem. 2006; 45: 3496
  • 10 Hawthorne MF, Wegner PA. J. Am. Chem. Soc. 1968; 90: 896
  • 11 Ramachandran BM, Knobler CB, Hawthorne MF. Inorg. Chem. 2006; 45: 336
  • 12 Bondarev O, Sevryugina YV, Jalisatgi SS, Hawthorne MF. Inorg. Chem. 2012; 51: 9935
  • 13 Safronov AV, Sevryugina YV, Jalisatgi SS, Kennedy RD, Barnes CL, Hawthorne MF. Inorg. Chem. 2012; 51: 2629
    • 14a Yu W.-B, Cui P.-F, Gao W.-X, Jin G.-X. Coord. Chem. Rev. 2017; 350: 300
    • 14b Zhang X, Yan H. Coord. Chem. Rev. 2019; 378: 466
    • 15a Zhang R, Zhu L, Liu G, Dai H, Lu Z, Zhao J, Yan H. J. Am. Chem. Soc. 2012; 134: 10341
    • 15b Wang Z, Ye H, Li Y, Li Y, Yan H. J. Am. Chem. Soc. 2013; 135: 11289
  • 16 Hoel EL, Talebinasab-Savari M, Hawthorne MF. J. Am. Chem. Soc. 1977; 99: 4356
  • 17 Mirabelli MG. L, Sneddon LG. J. Am. Chem. Soc. 1988; 110: 449

    • For reviews, see:
    • 18a Quan Y, Qiu Z, Xie Z. Chem. Eur. J. 2018; 24: 2795
    • 18b Quan Y, Xie Z. Chem. Soc. Rev. 2019; 48: 3660
    • 18c Au YK, Xie Z. Bull. Chem. Soc. Jpn. 2021; 94: 879
    • 18d Qiu Z, Xie Z. Acc. Chem. Res. 2021; 54: 4065
    • 18e Zhang J, Xie Z. Adv. Catal. 2022; 71: 91
    • 18f Zhang J, Xie Z. Org. Chem. Front. 2023; 10: 3074
  • 19 Quan Y, Xie Z. J. Am. Chem. Soc. 2014; 136: 15513
  • 20 Lyu H, Quan Y, Xie Z. Angew. Chem. Int. Ed. 2015; 54: 10623
  • 21 Zhang C, Wang Q, Tian S, Zhang J, Li J, Zhou L, Lu J. Org. Biomol. Chem. 2020; 18: 4723
  • 22 Cheng B, Chen Y, Xie Z. J. Org. Chem. 2021; 86: 12412
    • 23a Quan Y, Xie Z. Angew. Chem. Int. Ed. 2016; 55: 1295
    • 23b Mu W.-H, Liu W.-Z, Cheng R.-J, Fang D.-C. ACS Omega 2019; 4: 465
  • 24 Quan Y, Lyu H, Xie Z. Chem. Commun. 2017; 53: 4818
  • 25 Chen Y, Quan Y, Xie Z. Chem. Commun. 2020; 56: 7001
  • 26 Baek Y, Cheong K, Ko GH, Han GU, Han SH, Kim D, Lee K, Lee PH. J. Am. Chem. Soc. 2020; 142: 9890
  • 27 Shin S, Um K, Ko GH, Han GU, Kim D, Lee PH. Org. Lett. 2022; 24: 3128
  • 28 Quan Y, Tang C, Xie Z. Chem. Sci. 2016; 7: 5838
  • 29 Wang Q, Tian S, Zhang C, Li J, Wang Z, Du Y, Zhou L, Lu J. Org. Lett. 2019; 21: 8018
  • 30 Zhang L.-B, Xie Z. Org. Lett. 2022; 24: 1318
  • 31 Ko GH, Um K, Noh HC, Kim JY, Jeong H, Maeng C, Han SH, Han GU, Lee PH. Org. Lett. 2022; 24: 1604
  • 32 Lyu H, Quan Y, Xie Z. J. Am. Chem. Soc. 2016; 138: 12727
  • 33 Li H, Bai F, Yan H, Lu C, Bregadze VI. Eur. J. Org. Chem. 2017; 1343
  • 34 Baek Y, Kim S, Son J.-Y, Lee K, Kim D, Lee PH. ACS Catal. 2019; 9: 10418
    • 35a Han GU, Baek Y, Lee K, Shin S, Noh HC, Lee PH. Org. Lett. 2021; 23: 416
    • 35b Yang H, Noh HC, Lee PH. Asian J. Org. Chem. 2023; 12: e202200630
    • 35c Han GU, Shin S, Baek Y, Kim D, Lee K, Kim JG, Lee PH. Org. Lett. 2021; 23: 8622
  • 36 Zhang L.-B, Xie Z. Org. Lett. 2022; 24: 7077
  • 37 Park K, Han GU, Yoon S, Lee E, Noh HC, Lee K, Maeng C, Kim D, Lee PH. Org. Lett. 2023; 25: 5989
    • 38a Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
    • 38b Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 38c Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 38d Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 38e Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 39 Lyu H, Xie Z. Chem. Commun. 2022; 58: 8392
  • 40 Lyu H, Quan Y, Xie Z. Angew. Chem. Int. Ed. 2016; 55: 11840
  • 41 Lyu H, Quan Y, Xie Z. Chem. Eur. J. 2017; 23: 14866

    • For selected examples, see:
    • 42a Sevryugina Y, Julius RL, Hawthorne MF. Inorg. Chem. 2010; 49: 10627
    • 42b Kracke GR, Van-Gordon MR, Sevryugina Y, Kueffer VP. J, Kabytaev K, Jalisatgi SS, Hawthorne MF. ChemMedChem 2015; 10: 62
    • 42c Beletskaya IP, Bregadze VI, Kabytaev KZ, Zhigareva GG, Petrovskii PV, Glukhov IV, Starikova ZA. Organometallics 2007; 26: 2340
    • 42d Mukhin SN, Kabytaev KZ, Zhigareva GG, Glukhov IV, Starikova ZA, Bregadze VI, Beletskaya IP. Organometallics 2008; 27: 5937
    • 42e Dziedzic RM, Saleh LM. A, Axtell JC, Martin JL, Stevens SL, Royappa AT, Rheingold AL, Spokoyny AM. J. Am. Chem. Soc. 2016; 138: 9081
    • 42f Leitao EM, Jurca T, Manners I. Nat. Chem. 2013; 5: 817
    • 42g Kabytaev KZ, Everett TA, Safronov AV, Sevryugina YV, Jalisatgi SS, Hawthorne MF. Eur. J. Inorg. Chem. 2013; 2488
    • 42h Kabytaev KZ, Safronov AV, Sevryugina YV, Barnes CL, Jalisatgi SS, Hawthorne MF. Inorg. Chem. 2015; 54: 4143
    • 42i Himmelspach A, Finze M. Eur. J. Inorg. Chem. 2010; 2012
    • 42j Jiang W, Knobler CB, Curtis CE, Mortimer MD, Hawthorne MF. Inorg. Chem. 1995; 34: 3491
    • 42k Bayer MJ, Herzog A, Diaz M, Harakas GA, Lee H, Knobler CB, Hawthorne MF. Chem. Eur. J. 2003; 9: 2732
    • 42l Puga AV, Teixidor F, Sillanpää R, Kivekäsc R, ViÇas C. Chem. Commun. 2011; 47: 2252
    • 42m Kabytaev KZ, Mukhin SN, Glukhov IV, Starikova ZA, Bregadze VI, Beletskaya IP. Organometallics 2009; 28: 4758
    • 42n Dziedzic RM, Martin JL, Axtell JC, Saleh L, Ong T.-C, Yang Y.-F, Messina MS, Rheingold AL, Houk KN, Spokoyny AM. J. Am. Chem. Soc. 2017; 139: 7729
    • 42o Eleazera BJ, Smitha MD, Popov AA, Peryshkov DV. Chem. Sci. 2017; 8: 5399
    • 42p Waddington MA, Zheng A, Stauber JM, Moully EH, Montgomery HE, Saleh LM. A, Kral P, Spokoyny AM. J. Am. Chem. Soc. 2021; 143: 8661
  • 43 Au YK, Lyu H, Quan Y, Xie Z. J. Am. Chem. Soc. 2019; 141: 12855
  • 44 Au YK, Lyu H, Quan Y, Xie Z. Chin. J. Chem. 2020; 38: 383
  • 45 Cheng B, Chen Y, Zhou P, Xie Z. Chem. Commun. 2022; 58: 629
  • 46 Lyu H, Zhang J, Yang J, Quan Y, Xie Z. J. Am. Chem. Soc. 2019; 141: 4219
    • 47a Guo C, Qiu Z, Xie Z. ACS Catal. 2021; 11: 2134
    • 47b Liu D, Dang L, Sun Y, Chan H.-S, Lin Z, Xie Z. J. Am. Chem. Soc. 2008; 130: 16103
  • 48 Xu T.-T, Cao K, Zhang C.-Y, Wu J, Jiang L, Yang J. Chem. Commun. 2018; 54: 13603
  • 49 Cao K, Zhang CY, Xu T.-T, Wu J, Ding L.-F, Jiang L, Yang J. J. Organomet. Chem. 2019; 902: 120956
  • 50 Wu J, Cao K, Zhang C.-Y, Xu T.-T, Ding L.-F, Li B, Yang J. Org. Lett. 2019; 21: 5986
  • 51 Cheng R, Li B, Wu J, Zhang J, Qiu Z, Tang W, You S.-L, Tang Y, Xie Z. J. Am. Chem. Soc. 2018; 140: 4508
  • 52 Cheng R, Zhang J, Zhang H, Qiu Z, Xie Z. Nat. Commun. 2021; 12: 7146
  • 53 Zhang H, Zhang J, Qiu Z, Xie Z. ACS Catal. 2023; 13: 13856
  • 54 Cao K, Wu J, Zhang C.-Y, Ding L.-F, Yang J. J. Organomet. Chem. 2021; 954–955: 122069
  • 55 Liang Y.-F, Yong L, Jei BB, Kuniyil R, Ackermann L. Chem. Sci. 2020; 11: 10764
  • 56 Li C.-X, Zhang H.-Y, Wong T.-Y, Cao H.-J, Yan H, Lu C.-S. Org. Lett. 2017; 19: 5178
  • 57 Cao H.-J, Wei X, Sun F, Zhang X, Lu C, Yan H. Chem. Sci. 2021; 12: 15563
  • 58 Wu J, Cao K, Zhang C.-Y, Xu T.-T, Wen X.-Y, Li B, Yang J. Inorg. Chem. 2020; 59: 17340
  • 59 Yang Z, Wu Y, Fu Y, Yang J, Lu J, Lu J.-Y. Chem. Commun. 2021; 57: 1655
  • 60 Ko GH, Lee JK, Han SH, Lee PH. Org. Lett. 2022; 24: 1507
  • 61 Zhang H, Cheng R, Qiu Z, Xie Z. Chem. Commun. 2023; 59: 740
  • 62 Lyu H, Quan Y, Xie Z. Chem. Sci. 2018; 9: 6390
  • 63 Zhang X, Zheng H, Li J, Xu F, Zhao J, Yan H. J. Am. Chem. Soc. 2017; 139: 14511
  • 64 Zhang X, Yan H. Chem. Sci. 2018; 9: 3964
  • 65 Cao H.-j, Chen M, Sun F, Zhao Y, Lu C, Zhang X, Shi Z, Yan H. ACS Catal. 2021; 11: 14047
  • 66 Zhang Z.-Y, Zhang X, Yuan J, Yue C.-D, Meng S, Chen J, Yu G.-A, Che C.-M. Chem. Eur. J. 2020; 26: 5037
  • 67 Chen Y, Au YK, Quan Y, Xie Z. Sci. China: Chem. 2019; 62: 74
  • 68 Chen Y, Quan Y, Xie Z. Chem. Commun. 2020; 56: 12997
  • 69 Au YK, Lyu H, Quan Y, Xie Z. J. Am. Chem. Soc. 2020; 142: 6940
  • 70 Chen Y, Lyu H, Quan Y, Xie Z. Org. Lett. 2021; 23: 4163
  • 71 Zhou P, Chen Y, Xie Z. ACS Catal. 2022; 12: 8761
  • 72 Zhao J, Xie Z. Sci. China: Chem. 2023; 66: 2836
  • 73 Quan Y, Xie Z. J. Am. Chem. Soc. 2015; 137: 3502
  • 74 Cui C.-X, Zhang J, Qiu Z, Xie Z. Dalton Trans. 2020; 49: 1380
  • 75 Cheng R, Qiu Z, Xie Z. Chin. J. Chem. 2020; 38: 1575
    • 76a Naito H, Morisaki Y, Chujo Y. Angew. Chem. Int. Ed. 2015; 54: 5084
    • 76b Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. Angew. Chem. Int. Ed. 2017; 56: 254
    • 76c Yang X, Zhang B, Zhang S, Li G, Xu L, Wang Z, Li P, Zhang Y, Liu Z, He G. Org. Lett. 2019; 21: 8285
    • 76d Ochi J, Tanaka K, Chujo Y. Angew. Chem. Int. Ed. 2020; 59: 9841
    • 76e Guo J, Liu D, Zhang J, Zhang J, Miao Q, Xie Z. Chem. Commun. 2015; 51: 12004
  • 77 Au YK, Quan Y, Xie Z. Chem. Asian J. 2020; 15: 2170
  • 78 Noh HC, Kim C.-E, Lee K, Kim D, Lee PH. Org. Lett. 2023; 25: 6643
  • 79 Yuan S, Zhang H, Qiu Z, Xie Z. J. Org. Chem. 2024; 89: 2474