Semin Liver Dis 2024; 44(03): 319-332
DOI: 10.1055/a-2338-9261
Review Article

Inflammation in Steatotic Liver Diseases: Pathogenesis and Therapeutic Targets

Shengying Qian*
1   Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
2   University of Chinese Academy of Sciences, Beijing, China
,
Xiaolin Wang*
3   Department of Infectious Diseases, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, China
,
Yingfen Chen
1   Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
2   University of Chinese Academy of Sciences, Beijing, China
,
Qiuhong Zai
1   Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
2   University of Chinese Academy of Sciences, Beijing, China
,
Yong He
1   Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
2   University of Chinese Academy of Sciences, Beijing, China
› Author Affiliations


Abstract

Alcohol-related liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), two main types of steatotic liver disease (SLDs), are characterized by a wide spectrum of several different liver disorders, including simple steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. Multiple immune cell-mediated inflammatory responses not only orchestrate the killing and removal of infected/damaged cells but also exacerbate the development of SLDs when excessive or persistent inflammation occurs. In recent years, single-cell and spatial transcriptome analyses have revealed the heterogeneity of liver-infiltrated immune cells in ALD and MASLD, revealing a new immunopathological picture of SLDs. In this review, we will emphasize the roles of several key immune cells in the pathogenesis of ALD and MASLD and discuss inflammation-based approaches for effective SLD intervention. In conclusion, the study of immunological mechanisms, especially highly specific immune cell population functions, may provide novel therapeutic opportunities for this life-threatening disease.

Author Contributions

S.Q. wrote inflammation in ALD and therapeutic targets; X.W. wrote inflammation in MASLD; Y.C. prepared [Fig. 1] and [Table 1]; Q.Z. prepared [Fig. 2]; Y.H. initiated and supervised the writing of the entire paper and edited the paper.


* S.Q. and X.W. contributed equally to this work.




Publication History

Accepted Manuscript online:
05 June 2024

Article published online:
25 June 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Eslam M, Newsome PN, Sarin SK. et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 2020; 73 (01) 202-209
  • 2 Peacock A, Leung J, Larney S. et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction 2018; 113 (10) 1905-1926
  • 3 Collaborators GBDA. GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018; 392 (10152): 1015-1035
  • 4 Quek J, Chan KE, Wong ZY. et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2023; 8 (01) 20-30
  • 5 Paik JM, Henry L, Younossi Y, Ong J, Alqahtani S, Younossi ZM. The burden of nonalcoholic fatty liver disease (NAFLD) is rapidly growing in every region of the world from 1990 to 2019. Hepatol Commun 2023; 7 (10) 7
  • 6 Shim YR, Jeong WI. Recent advances of sterile inflammation and inter-organ cross-talk in alcoholic liver disease. Exp Mol Med 2020; 52 (05) 772-780
  • 7 Wang M, Ma LJ, Yang Y, Xiao Z, Wan JB. n-3 Polyunsaturated fatty acids for the management of alcoholic liver disease: a critical review. Crit Rev Food Sci Nutr 2019; 59 (sup1): S116-S129
  • 8 Wang H, Zhou H, Zhang Q. et al. Inhibition of IRAK4 kinase activity improves ethanol-induced liver injury in mice. J Hepatol 2020; 73 (06) 1470-1481
  • 9 Xu MJ, Zhou Z, Parker R, Gao B. Targeting inflammation for the treatment of alcoholic liver disease. Pharmacol Ther 2017; 180: 77-89
  • 10 Rodriguez Y, Dunfield J, Roderique T, Ni HM. Liver-adipose tissue crosstalk in alcohol-associated liver disease: the role of mTOR. Liver Res 2022; 6 (04) 227-237
  • 11 Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24 (07) 908-922
  • 12 Mehal W. Mechanisms of liver fibrosis in metabolic syndrome. eGastroenterology 2023; 1 (01) e100015
  • 13 Huby T, Gautier EL. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat Rev Immunol 2022; 22 (07) 429-443
  • 14 Ibrahim SH, Hirsova P, Gores GJ. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut 2018; 67 (05) 963-972
  • 15 Ray K. Resmetirom proves positive for NASH with liver fibrosis. Nat Rev Gastroenterol Hepatol 2024; 21 (04) 218
  • 16 Wu XQ, Yang Y, Li WX. et al. Telomerase reverse transcriptase acts in a feedback loop with NF-κB pathway to regulate macrophage polarization in alcoholic liver disease. Sci Rep 2016; 6: 18685
  • 17 Kisseleva T, Brenner DA. The crosstalk between hepatocytes, hepatic macrophages, and hepatic stellate cells facilitates alcoholic liver disease. Cell Metab 2019; 30 (05) 850-852
  • 18 Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol 2015; 12 (07) 387-400
  • 19 Tanwar S, Rhodes F, Srivastava A, Trembling PM, Rosenberg WM. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J Gastroenterol 2020; 26 (02) 109-133
  • 20 Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 2016; 16 (07) 407-420
  • 21 de Carvalho Ribeiro M, Szabo G. Role of the inflammasome in liver disease. Annu Rev Pathol 2022; 17: 345-365
  • 22 Wu X, Fan X, McMullen MR. et al. Macrophage-derived MLKL in alcohol-associated liver disease: regulation of phagocytosis. Hepatology 2023; 77 (03) 902-919
  • 23 Duan Y, Chu H, Brandl K. et al. CRIg on liver macrophages clears pathobionts and protects against alcoholic liver disease. Nat Commun 2021; 12 (01) 7172
  • 24 Ma HY, Yamamoto G, Xu J. et al. IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. J Hepatol 2020; 72 (05) 946-959
  • 25 Lee JH, Shim YR, Seo W. et al. Mitochondrial double-stranded RNA in exosome promotes interleukin-17 production through Toll-like receptor 3 in alcohol-associated liver injury. Hepatology 2020; 72 (02) 609-625
  • 26 Kim HH, Shim YR, Choi SE. et al. Catecholamine induces Kupffer cell apoptosis via growth differentiation factor 15 in alcohol-associated liver disease. Exp Mol Med 2023; 55 (01) 158-170
  • 27 Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC. Nonclassical monocytes in health and disease. Annu Rev Immunol 2019; 37: 439-456
  • 28 Kim A, Bellar A, McMullen MR, Li X, Nagy LE. Functionally diverse inflammatory responses in peripheral and liver monocytes in alcohol-associated hepatitis. Hepatol Commun 2020; 4 (10) 1459-1476
  • 29 Sanz-Garcia C, Poulsen KL, Bellos D. et al. The non-transcriptional activity of IRF3 modulates hepatic immune cell populations in acute-on-chronic ethanol administration in mice. J Hepatol 2019; 70 (05) 974-984
  • 30 Borregaard N. Neutrophils, from marrow to microbes. Immunity 2010; 33 (05) 657-670
  • 31 Khan RS, Lalor PF, Thursz M, Newsome PN. The role of neutrophils in alcohol-related hepatitis. J Hepatol 2023; 79 (04) 1037-1048
  • 32 Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types?. Front Physiol 2018; 9: 113
  • 33 Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19 (04) 253-275
  • 34 Li N, Liu H, Xue Y. et al. Targetable Brg1-CXCL14 axis contributes to alcoholic liver injury by driving neutrophil trafficking. EMBO Mol Med 2023; 15 (03) e16592
  • 35 Kusumanchi P, Liang T, Zhang T. et al. Stress-responsive gene FK506-binding protein 51 mediates alcohol-induced liver injury through the hippo pathway and chemokine (C-X-C motif) ligand 1 signaling. Hepatology 2021; 74 (03) 1234-1250
  • 36 Cho Y, Bukong TN, Tornai D. et al. Neutrophil extracellular traps contribute to liver damage and increase defective low-density neutrophils in alcohol-associated hepatitis. J Hepatol 2023; 78 (01) 28-44
  • 37 Ren R, He Y, Ding D. et al. Aging exaggerates acute-on-chronic alcohol-induced liver injury in mice and humans by inhibiting neutrophilic sirtuin 1-C/EBPα-miRNA-223 axis. Hepatology 2022; 75 (03) 646-660
  • 38 Ma J, Guillot A, Yang Z. et al. Distinct histopathological phenotypes of severe alcoholic hepatitis suggest different mechanisms driving liver injury and failure. J Clin Invest 2022; 132 (14) 132
  • 39 Artru F, Bou Saleh M, Maggiotto F. et al. IL-33/ST2 pathway regulates neutrophil migration and predicts outcome in patients with severe alcoholic hepatitis. J Hepatol 2020; 72 (06) 1052-1061
  • 40 Wang H, Mehal W, Nagy LE, Rotman Y. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell Mol Immunol 2021; 18 (01) 73-91
  • 41 He Y, Hwang S, Ahmed YA. et al. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021; 18 (01) 18-37
  • 42 Chu S, Sun R, Gu X. et al. Inhibition of sphingosine-1-phosphate-induced Th17 cells ameliorates alcohol-associated steatohepatitis in mice. Hepatology 2021; 73 (03) 952-967
  • 43 Zeng S, Rosati E, Saggau C. et al. Candida albicans-specific Th17 cell-mediated response contributes to alcohol-associated liver disease. Cell Host Microbe 2023; 31 (03) 389-404.e7
  • 44 Eom JA, Jeong JJ, Han SH. et al. Gut-microbiota prompt activation of natural killer cell on alcoholic liver disease. Gut Microbes 2023; 15 (02) 2281014
  • 45 Lee KC, Chen P, Maricic I. et al. Intestinal iNKT cells migrate to liver and contribute to hepatocyte apoptosis during alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2019; 316 (05) G585-G597
  • 46 Byun JS, Yi HS. Hepatic immune microenvironment in alcoholic and nonalcoholic liver disease. BioMed Res Int 2017; 2017: 6862439
  • 47 Gao H, Jin Z, Bandyopadhyay G. et al. MiR-690 treatment causes decreased fibrosis and steatosis and restores specific Kupffer cell functions in NASH. Cell Metab 2022; 34 (07) 978-990.e4
  • 48 Tran S, Baba I, Poupel L. et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 2020; 53 (03) 627-640.e5
  • 49 Seidman JS, Troutman TD, Sakai M. et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 2020; 52 (06) 1057-1074.e7
  • 50 Remmerie A, Martens L, Thoné T. et al. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 2020; 53 (03) 641-657.e14
  • 51 Han H, Ge X, Komakula SSB. et al. Macrophage-derived osteopontin (SPP1) protects from nonalcoholic steatohepatitis. Gastroenterology 2023; 165 (01) 201-217
  • 52 Xiong X, Kuang H, Ansari S. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell 2019; 75 (03) 644-660.e5
  • 53 Hendrikx T, Porsch F, Kiss MG. et al. Soluble TREM2 levels reflect the recruitment and expansion of TREM2+ macrophages that localize to fibrotic areas and limit NASH. J Hepatol 2022; 77 (05) 1373-1385
  • 54 Liu L, Zhou Y, Liu Z. et al. Osr1 regulates macrophage-mediated liver inflammation in nonalcoholic fatty liver disease progression. Cell Mol Gastroenterol Hepatol 2023; 15 (05) 1117-1133
  • 55 Xu F, Guo M, Huang W. et al. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol 2020; 36: 101634
  • 56 Lee S, Usman TO, Yamauchi J. et al. Myeloid FoxO1 depletion attenuates hepatic inflammation and prevents nonalcoholic steatohepatitis. J Clin Invest 2022; 132 (14) 132
  • 57 Wang Q, Zhou H, Bu Q. et al. Role of XBP1 in regulating the progression of non-alcoholic steatohepatitis. J Hepatol 2022; 77 (02) 312-325
  • 58 Govaere O, Petersen SK, Martinez-Lopez N. et al. Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease. J Hepatol 2022; 76 (05) 1001-1012
  • 59 Morikawa R, Nakamoto N, Amiya T. et al. Role of CC chemokine receptor 9 in the progression of murine and human non-alcoholic steatohepatitis. J Hepatol 2021; 74 (03) 511-521
  • 60 Cai B, Dongiovanni P, Corey KE. et al. Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis. Cell Metab 2020; 31 (02) 406-421.e7
  • 61 Qing J, Ren Y, Zhang Y. et al. Dopamine receptor D2 antagonism normalizes profibrotic macrophage-endothelial crosstalk in non-alcoholic steatohepatitis. J Hepatol 2022; 76 (02) 394-406
  • 62 Hwang S, He Y, Xiang X. et al. Interleukin-22 ameliorates neutrophil-driven nonalcoholic steatohepatitis through multiple targets. Hepatology 2020; 72 (02) 412-429
  • 63 van der Windt DJ, Sud V, Zhang H. et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018; 68 (04) 1347-1360
  • 64 Wang X, He Y, Mackowiak B, Gao B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 2021; 70 (04) 784-795
  • 65 Hwang S, Wang X, Rodrigues RM. et al. Protective and detrimental roles of p38α mitogen-activated protein kinase in different stages of nonalcoholic fatty liver disease. Hepatology 2020; 72 (03) 873-891
  • 66 Wang H, Zhang H, Wang Y. et al. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis. J Hepatol 2021; 75 (06) 1271-1283
  • 67 He Y, Rodrigues RM, Wang X. et al. Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223-enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis. J Clin Invest 2021; 131 (03) 131
  • 68 Hou X, Yin S, Ren R. et al. Myeloid-cell-specific IL-6 signaling promotes MicroRNA-223-enriched exosome production to attenuate NAFLD-associated fibrosis. Hepatology 2021; 74 (01) 116-132
  • 69 He Y, Hwang S, Cai Y. et al. MicroRNA-223 ameliorates nonalcoholic steatohepatitis and cancer by targeting multiple inflammatory and oncogenic genes in hepatocytes. Hepatology 2019; 70 (04) 1150-1167
  • 70 Calvente CJ, Tameda M, Johnson CD. et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. J Clin Invest 2019; 129 (10) 4091-4109
  • 71 Karl M, Hasselwander S, Zhou Y. et al. Dual roles of B lymphocytes in mouse models of diet-induced nonalcoholic fatty liver disease. Hepatology 2022; 76 (04) 1135-1149
  • 72 Barrow F, Khan S, Fredrickson G. et al. Microbiota-driven activation of intrahepatic B cells aggravates NASH through innate and adaptive signaling. Hepatology 2021; 74 (02) 704-722
  • 73 Kotsiliti E, Leone V, Schuehle S. et al. Intestinal B cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling. J Hepatol 2023; 79 (02) 296-313
  • 74 Haas JT, Vonghia L, Mogilenko DA. et al. Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution. Nat Metab 2019; 1 (06) 604-614
  • 75 Pfister D, Núñez NG, Pinyol R. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021; 592 (7854) 450-456
  • 76 Dudek M, Pfister D, Donakonda S. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 2021; 592 (7854) 444-449
  • 77 Moreno-Fernandez ME, Giles DA, Oates JR. et al. PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease. Cell Metab 2021; 33 (06) 1187-1204.e9
  • 78 Torres-Hernandez A, Wang W, Nikiforov Y. et al. γδ T cells promote steatohepatitis by orchestrating innate and adaptive immune programming. Hepatology 2020; 71 (02) 477-494
  • 79 Marinović S, Lenartić M, Mladenić K. et al. NKG2D-mediated detection of metabolically stressed hepatocytes by innate-like T cells is essential for initiation of NASH and fibrosis. Sci Immunol 2023; 8 (87) eadd1599
  • 80 Singal AK, Bataller R, Ahn J, Kamath PS, Shah VH. ACG clinical guideline: alcoholic liver disease. Am J Gastroenterol 2018; 113 (02) 175-194
  • 81 Dasarathy S, Mitchell MC, Barton B. et al. Design and rationale of a multicenter defeat alcoholic steatohepatitis trial: (DASH) randomized clinical trial to treat alcohol-associated hepatitis. Contemp Clin Trials 2020; 96: 106094
  • 82 Verbeke L, Farre R, Trebicka J. et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 2014; 59 (06) 2286-2298
  • 83 Ambade A, Lowe P, Kodys K. et al. Pharmacological inhibition of CCR2/5 signaling prevents and reverses alcohol-induced liver damage, steatosis, and inflammation in mice. Hepatology 2019; 69 (03) 1105-1121
  • 84 Maccioni L, Fu Y, Horsmans Y. et al. Alcohol-associated bowel disease: new insights into pathogenesis. eGastroenterology 2023; 1 (01) e100013
  • 85 Singal AK, Shah VH. Current trials and novel therapeutic targets for alcoholic hepatitis. J Hepatol 2019; 70 (02) 305-313
  • 86 Philips CA, Pande A, Shasthry SM. et al. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin Gastroenterol Hepatol 2017; 15 (04) 600-602
  • 87 Cusi K, Isaacs S, Barb D. et al. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr Pract 2022; 28 (05) 528-562
  • 88 Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH: mechanisms and treatment options. JHEP Rep Innov Hepatol 2019; 1 (04) 312-328
  • 89 Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 2014; 20 (04) 573-591
  • 90 Lim LL, Chow E, Chan JCN. Cardiorenal diseases in type 2 diabetes mellitus: clinical trials and real-world practice. Nat Rev Endocrinol 2023; 19 (03) 151-163
  • 91 Khan RS, Bril F, Cusi K, Newsome PN. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology 2019; 70 (02) 711-724
  • 92 Cariou B. The metabolic triad of non-alcoholic fatty liver disease, visceral adiposity and type 2 diabetes: implications for treatment. Diabetes Obes Metab 2022; 24 (Suppl. 02) 15-27
  • 93 Kahl S, Gancheva S, Straßburger K. et al. Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes: a randomized, double-blind, phase 4, placebo-controlled trial. Diabetes Care 2020; 43 (02) 298-305
  • 94 Latva-Rasku A, Honka MJ, Kullberg J. et al. The SGLT2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: a randomized, double-blind, placebo-controlled study with 8-week treatment in type 2 diabetes patients. Diabetes Care 2019; 42 (05) 931-937
  • 95 Cusi K, Bril F, Barb D. et al. Effect of canagliflozin treatment on hepatic triglyceride content and glucose metabolism in patients with type 2 diabetes. Diabetes Obes Metab 2019; 21 (04) 812-821
  • 96 Benedé-Ubieto R, Cubero FJ, Nevzorova YA. Breaking the barriers: the role of gut homeostasis in metabolic-associated steatotic liver disease (MASLD). Gut Microbes 2024; 16 (01) 2331460
  • 97 Quesada-Vázquez S, Aragonès G, Del Bas JM, Escoté X. Diet, gut microbiota and non-alcoholic fatty liver disease: three parts of the same axis. Cells 2020; 9 (01) 9
  • 98 Roth JD, Feigh M, Veidal SS. et al. INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. World J Gastroenterol 2018; 24 (02) 195-210
  • 99 Ding L, Yang Q, Zhang E. et al. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice. Acta Pharm Sin B 2021; 11 (06) 1541-1554
  • 100 Kruger AJ, Fuchs BC, Masia R. et al. Prolonged cenicriviroc therapy reduces hepatic fibrosis despite steatohepatitis in a diet-induced mouse model of nonalcoholic steatohepatitis. Hepatol Commun 2018; 2 (05) 529-545
  • 101 Anstee QM, Neuschwander-Tetri BA, Wong VW. et al. Cenicriviroc for the treatment of liver fibrosis in adults with nonalcoholic steatohepatitis: AURORA Phase 3 study design. Contemp Clin Trials 2020; 89: 105922
  • 102 Podszun MC, Alawad AS, Lingala S. et al. Vitamin E treatment in NAFLD patients demonstrates that oxidative stress drives steatosis through upregulation of de-novo lipogenesis. Redox Biol 2020; 37: 101710
  • 103 Sethi JK, Hotamisligil GS. Metabolic Messengers: tumour necrosis factor. Nat Metab 2021; 3 (10) 1302-1312
  • 104 Burger K, Jung F, Baumann A. et al. TNFα is a key trigger of inflammation in diet-induced non-obese MASLD in mice. Redox Biol 2023; 66: 102870
  • 105 Guan Y, Peiffer B, Feng D. et al. IL-8+ neutrophils drive inexorable inflammation in severe alcohol-associated hepatitis. J Clin Invest 2024; 134 (09) 134
  • 106 Mackowiak B, Fu Y, Maccioni L, Gao B. Alcohol-associated liver disease. J Clin Invest 2024; 134 (03) 134
  • 107 Lazarus JV, Ivancovsky Wajcman D, Mark HE. et al. Opportunities and challenges following approval of resmetirom for MASH liver disease. Nat Med 2024; (e-pub ahead of print) DOI: 10.1038/s41591-024-02958-z.
  • 108 Krenkel O, Hundertmark J, Abdallah AT. et al. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut 2020; 69 (03) 551-563
  • 109 Park SR, Cho CS, Xi J, Kang HM, Lee JH. Holistic characterization of single-hepatocyte transcriptome responses to high-fat diet. Am J Physiol Endocrinol Metab 2021; 320 (02) E244-E258
  • 110 Su Q, Kim SY, Adewale F. et al. Single-cell RNA transcriptome landscape of hepatocytes and non-parenchymal cells in healthy and NAFLD mouse liver. iScience 2021; 24 (11) 103233
  • 111 Zhang H, Ma Y, Cheng X. et al. Targeting epigenetically maladapted vascular niche alleviates liver fibrosis in nonalcoholic steatohepatitis. Sci Transl Med 2021; 13 (614) eabd1206
  • 112 Zheng C, Zheng L, Yoo JK. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 2017; 169 (07) 1342-1356.e16
  • 113 Ma L, Hernandez MO, Zhao Y. et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell 2019; 36 (04) 418-430.e6
  • 114 Tamburini BAJ, Finlon JM, Gillen AE. et al. Chronic liver disease in humans causes expansion and differentiation of liver lymphatic endothelial cells. Front Immunol 2019; 10: 1036
  • 115 Ramachandran P, Dobie R, Wilson-Kanamori JR. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019; 575 (7783) 512-518
  • 116 Zhang Q, He Y, Luo N. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019; 179 (04) 829-845.e20
  • 117 Sharma A, Seow JJW, Dutertre CA. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 2020; 183 (02) 377-394.e21