CC BY 4.0 · Organic Materials 2024; 06(02): 71-77
DOI: 10.1055/a-2333-9789
Soluble Graphene Nanoarchitectures
Short Communication

Towards the Tetrabenzo-Fused Circumazulene via In-Solution and On-Surface Synthesis

Fupeng Wu#
a   Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
b   Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
,
Wangwei Xu#
c   Empa – Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
,
a   Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
b   Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
,
b   Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
,
Lin Yang
a   Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
b   Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
,
c   Empa – Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
,
c   Empa – Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
,
Ji Ma
a   Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
b   Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
,
a   Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
b   Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
› Author Affiliations


Abstract

The synthesis of circumazulene, a nonalternant isomer of circumnaphthalene, and its π-expanded derivatives poses a considerable challenge due to the lack of a suitable synthetic strategy. In this work, we present our efforts toward achieving tetrabenzo-fused circumazulene (1) through both solution and on-surface syntheses. In the case of in-solution synthesis, we obtained a product (P) with the desired target mass, but the structural verification proved to be challenging owing to the presence of various structural isomers. In the on-surface synthesis approach, a series of unexpected azulene-embedded nanographenes were obtained, including a molecule with an additional pentagonal ring (U1) based on the backbone of 1. Furthermore, theoretical calculations were conducted to shed light on these unexpected structures and to investigate their aromaticity. This work opens a new avenue for the design and synthesis of novel nonalternant graphene nanostructures incorporating circumarene.

# These authors contributed equally to this work.




Publication History

Received: 14 January 2024

Accepted after revision: 30 April 2024

Accepted Manuscript online:
27 May 2024

Article published online:
14 June 2024

© 2024. The Authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Zou Y, Hou X, Wei H, Shao J, Jiang Q, Ren L, Wu J. Angew. Chem. Int. Ed. 2023; 62: e202301041 Angew. Chem. 2023, 135, e202301041
  • 2 Liu J, Feng X. Angew. Chem. Int. Ed. 2020; 59: 23386 Angew. Chem. 2020, 132, 23591
  • 3 Chen Q, Schollmeyer D, Müllen K, Narita A. J. Am. Chem. Soc. 2019; 141: 19994
  • 4 Newman MS. J. Am. Chem. Soc. 1940; 62: 1683
  • 5 Craig JT, Halton B, Lo S. Aust. J. Chem. 1975; 28: 913
  • 6 Shen H-C, Tang J-M, Chang H-K, Yang C-W, Liu R-S. J. Org. Chem. 2005; 70: 10113
  • 7 Van Dijk JT, Hartwijk A, Bleeker AC, Lugtenburg J, Cornelisse J. J. Org. Chem. 1996; 61: 1136
  • 8 Scholl R, Meyer K. Ber. Dtsch. Chem. Ges. 1932; 65: 902
  • 9 Clar E. Nature 1948; 161: 238
  • 10 Rohr U, Schlichting P, Böhm A, Gross M, Meerholz K, Bräuchle C, Müllen K. Angew. Chem. Int. Ed. 1998; 37: 1434
  • 11 Saïdi-Besbes S, Grelet É, Bock H. Angew. Chem. Int. Ed. 2006; 45: 1783
  • 12 Li J, Chang J-J, Tan HS, Jiang H, Chen X, Chen Z, Zhang J, Wu J. Chem. Sci. 2012; 3: 846
  • 13 Broene RD, Diederich F. Tetrahedron Lett. 1991; 32: 5227
  • 14 Ajayakumar M, Fu Y, Ma J, Hennersdorf F, Komber H, Weigand JJ, Alfonsov A, Popov AA, Berger R, Liu J. J. Am. Chem. Soc. 2018; 140: 6240
  • 15 Jiang Q, Wei H, Hou X, Chi C. Angew. Chem. Int. Ed. 2023; 62: e202306938 Angew. Chem. 2023, 135, e202306938
  • 16 Balaban AT, Randić M. J. Chem. Inf. Comput. 2004; 44: 1701
  • 17 Márquez IR, Castro-Fernández S, Millán A, Campaña AG. Chem. Commun. 2018; 54: 6705
  • 18 Miyoshi H, Nobusue S, Shimizu A, Tobe Y. Chem. Soc. Rev. 2015; 44: 6560
  • 19 Pun SH, Miao Q. Acc. Chem. Res. 2018; 51: 1630
  • 20 Tobe Y. Chem. Rec. 2015; 15: 86
  • 21 Fei Y, Liu J. Adv. Sci. 2022; 9: 2201000
  • 22 Butterfield AM, Gilomen B, Siegel JS. Org. Process Res. Dev. 2012; 16: 664
    • 23a Feng C-N, Kuo M-Y, Wu Y-T. Angew. Chem. Int. Ed. 2013; 52: 7791
    • 23b Barth WE, Lawton RG. J. Am. Chem. Soc. 1966; 88: 380
    • 23c Yamamoto K, Harada T, Nakazaki M, Naka T, Kai Y, Harada S, Kasai N. J. Am. Chem. Soc. 1983; 105: 7171
    • 23d Yamamoto K, Saitho Y, Iwaki D, Ooka T. Angew. Chem. Int. Ed. Engl. 1991; 30: 1173
  • 24 Banhart F, Kotakoski J, Krasheninnikov AV. ACS Nano 2011; 5: 26
  • 26 Pun SH, Wang Y, Chu M, Chan CK, Li Y, Liu Z, Miao Q. J. Am. Chem. Soc. 2019; 141: 9680
  • 27 Reisch HA, Bratcher MS, Scott LT. Org. Lett. 2000; 2: 1427
  • 28 Wu J, Pisula W, Müllen K. Chem. Rev. 2007; 107: 718
  • 29 Stabel A, Herwig P, Müllen K, Rabe JP. Angew Chem. Int. Ed. Engl. 1995; 34: 1609
  • 30 Miller RW, Duncan AK, Schneebeli ST, Gray DL, Whalley AC. Chem. Eur. J. 2014; 20: 3705
  • 31 Sakamoto Y, Suzuki T. J. Am. Chem. Soc. 2013; 135: 14074
  • 32 Xiao S, Myers M, Miao Q, Sanaur S, Pang K, Steigerwald ML, Nuckolls C. Angew. Chem. Int. Ed. 2005; 44: 7390
  • 33 Wu F, Ma J, Lombardi F, Fu Y, Liu F, Huang Z, Liu R, Komber H, Alexandropoulos DI, Dmitrieva E. Angew. Chem. Int. Ed. 2022; 61: e202202170 Angew. Chem. 2022, 134, e202202170
  • 34 Wu F, Barragán A, Gallardo A, Yang L, Biswas K, Écija D, Mendieta-Moreno JI, Urgel JI, Ma J, Feng X. Chem. Eur. J. 2023; 29: e202301739
  • 35 Schleyer PV, Maerker C, Dransfeld A, Jiao HJ, Hommes N. J. Am. Chem. Soc. 1996; 118: 6317
  • 36 Herges R, Geuenich D. J. Phys. Chem. A 2001; 105: 3214
  • 37 The UV-visible spectra were measured on an Agilent Cary 5000 UV-VIS-NIR spectrophotometer. All density functional theory calculations were performed using the Gaussian 09 program. The geometry optimization of all the study compounds in the ground state was optimized by the B3LYP/6 – 31 G(d). STM measurements and on-surface synthesis were performed with commercial Scienta Omicron low-temperature STM operating at base pressure below 1 × 10−10 mbar. UHR STM images were acquired by recording the current channel while scanning the molecules in constant-height mode with CO-functionalized tips. The STM images were analyzed using Igor. Detail information about the general procedure as well as the analytical data of compounds/materials is provided in the Supporting Information.