Synlett
DOI: 10.1055/a-2333-8596
letter

Electromediated Alcohol-Based Passerini-Type Reaction

Alexandre Simon
,
Sylvestre P. J. T. Bachollet
,
Na Pan
,
Laurence Grimaud
,
Maxime R. Vitale
The authors gratefully thank the Agence Nationale de la Recherche (ANR, ANR-20-CE07-0020, ELMER), the Centre National de la Recherche Scientifique (CNRS), the École Normale Supérieure (ENS-PSL), and the Sorbonne Université for financial support. N. Pan thanks the China Scholarship Council (CSC) for funding her PhD studies.


Abstract

An electrochemical variant of the alcohol-based oxidative Passerini reaction is reported here. It relies on an indirect anodic oxidation process followed by a three-component coupling, in which TEMPO serves as a key redox mediator. This electrochemical approach permits to operate without the need for a metal catalyst nor oxygen atmosphere and allows the use of nonactivated alcohols as reaction partners. It could be applied to the preparation of good variety of α-acyloxy-carboxamides in yields ranging from 24% to 80%.

Supporting Information



Publication History

Received: 02 April 2024

Accepted after revision: 27 May 2024

Accepted Manuscript online:
27 May 2024

Article published online:
12 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Multicomponent Reactions. Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
  • 2 Cioc RC, Ruijter E, Orru RV. A. Green Chem. 2014; 16: 2958-2975
  • 3 Cioc R, Ruijter E, Orru RV.A. In Green Chemistry in Drug Discovery: From Academia to Industry. Richardson PF. Springer; Berlin/Heidelberg: 2022
  • 4 Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
  • 5 Multi-Component and Sequential Reactions in Polymer Synthesis – Advances in Polymer Science, Vol. 269. Theato P. Springer International Publishing; Cham: 2015
  • 6 Ruijter E, Orru RV. A. Drug Discovery Today: Technol. 2013; 10: e15
  • 7 Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
  • 8 Basso A, Moni L, Riva R. In Multicomponent Reactions in Organic Synthesis. Zhu J, Wang Q, Wang M.-X. Wiley-VCH; Weinheim: 2014. 8 265-300
  • 9 Moni L, Banfi L, Riva R, Basso A. Synthesis 2016; 48: 4050
  • 10 Ngouansavanh T, Zhu J. Angew. Chem. Int. Ed. 2006; 45: 3495
  • 11 Ngouansavanh T, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 5775
  • 12 Ye X, Xie C, Pan Y, Han L, Xie T. Org. Lett. 2010; 12: 4240
  • 13 Ye X, Xie C, Huang R, Liu J. Synlett 2012; 23: 409
    • 14a Dighe SU, Kolle S, Batra S. Eur. J. Org. Chem. 2015; 4238
    • 14b Guerrero I, San Segundo M, Correa A. Chem. Commun. 2018; 54: 1627
  • 15 Gini A, Uygur M, Rigotti T, Alemán J, García Mancheño O. Chem. Eur. J. 2018; 24: 12509
  • 16 Vila C, Rueping M. Green Chem. 2013; 15: 2056
  • 17 Rueping M, Vila C. Org. Lett. 2013; 15: 2092
  • 18 Rueping M, Vila C, Bootwicha T. ACS Catal. 2013; 3: 1676
  • 19 Chen Y, Feng G. Org. Biomol. Chem. 2015; 13: 4260
  • 20 Li D, Shen X, Lei J. J. Org. Chem. 2020; 85: 2466
  • 21 Pan N, Ling J, Zapata R, Pulicani J.-P, Grimaud L, Vitale MR. Green Chem. 2019; 21: 6194
  • 22 Pan N, Xinen Lee M, Bunel L, Grimaud L, Vitale MR. ACS Org. Inorg. Au 2021; 1: 18
  • 23 Brioche J, Masson G, Zhu J. Org. Lett. 2010; 12: 1432
  • 24 Kolle S, Dighe SU, Batra S. ARKIVOC 2016; (ii): 82
  • 25 Karimi B, Farhangi E. Adv. Synth. Catal. 2013; 355: 508

    • For a review, see:
    • 26a Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834

    • See also:
    • 26b Gerken JB, Pang YQ, Lauber MB, Stahl SS. J. Org. Chem. 2018; 83: 7323
    • 27a Semmelhack MF, Chou CS, Cortes DA. J. Am. Chem. Soc. 1983; 105: 4492
    • 27b Semmelhack MF, Schmid CR, Cortés DA. Tetrahedron Lett. 1986; 27: 1119
  • 28 Bailey WF, Bobbitt JM, Wiberg KB. J. Org. Chem. 2007; 72: 4504
  • 29 Golubev VA, Borislavskii VN, Aleksandrov AL. Russ. Chem. Bull. 1977; 26: 1874
  • 30 Ramozzi R, Morokuma K. J. Org. Chem. 2015; 80: 5652
  • 31 Heard DM, Lennox AJ. J. Angew. Chem. Int. Ed. 2020; 59: 18866
  • 32 Rafiee M, Miles KC, Stahl SS. J. Am. Chem. Soc. 2015; 137: 14751
  • 33 Typical Procedure for the Passerini-Type Reaction In a 5 mL IKA® ElectraSyn electrochemical cell equipped with a carbon graphite anode, a stainless-steel cathode, and a stir bar, the following were successively introduced under an argon atmosphere: TBABF4 (247 mg, 0.75 mmol, 0.25 eqiuv), TEMPO (46 mg, 0.30 mmol, 0.10 equiv), MeCN (3.0 mL), the alcohol partner (9.0 mmol, 3.0 equiv), the carboxylic acid partner (7.5 mmol, 2.5 equiv), and the isocyanide partner (3.0 mmol, 1.0 equiv). The resulting solution was then electrolyzed at a constant current (i = 50 mA, j = 20 mA cm–2) until the total electrical charge reached 2.7 F per mol of alcohol. After the reaction mixture was evaporated, yields were determined by 1H NMR spectroscopy using TBABF4 as an internal standard and/or after purification by column chromatography on silica gel. 2-(tert-Butylamino)-2-oxoethyl Acetate (4aaa) Purified with a gradient 100% cyclohexane to 50:50 cyclohexane–EtOAc. Yield: 77% (400 mg), white solid; mp 64–66 °C. 1H NMR (300 MHz, CDCl3): δ = 5.89 (br s, 1 H), 4.41 (s, 2 H), 2.13 (s, 3 H), 1.35 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 169.5, 166.1, 63.3, 51.5, 28.7, 20.8. HRMS (ESI): m/z [M + Na]+ calcd for C8H15NO3Na: 196.0944; found: 196.0945. 1-(tert-Butylamino)-1-oxopropan-2-yl Acetate (4baa) Purified with a gradient 100% cyclohexane to 50:50 cyclohexane–EtOAc. Yield: 60% (337 mg), white solid; mp 61–62 °C. 1H NMR (300 MHz, CDCl3): δ = 5.87 (br s, 1 H), 5.04 (q, J = 6.8 Hz, 1 H), 2.11 (s, 3 H), 1.41 (d, J = 6.8 Hz, 3 H), 1.34 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 169.5, 71.1, 51.2, 28.8, 21.2, 17.9. HRMS (ESI): m/z [M + H]+ calcd for C9H18NO3: 188.1281; found: 188.1281. 1-(tert-Butylamino)-1-oxobutan-2-yl Acetate (4caa) Purified with a gradient 100% cyclohexane to 50:50 cyclohexane–EtOAc. Yield: 80% (483 mg), white solid; mp 74–75 °C. 1H NMR (300 MHz, CDCl3): δ = 5.82 (br s, 1 H), 4.95 (dd, J = 6.0, 5.4 Hz, 1 H), 2.10 (s, 3 H), 1.95–1.64 (m, 2 H), 1.32 (s, 9 H), 0.87 (t, J = 7.4 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 169.7, 168.8, 75.3, 51.3, 28.7, 25.0, 21.1, 8.9. HRMS (ESI): m/z [M + Na]+ calcd for C10H19NO3Na: 224.1257; found: 224.1257. 1-(tert-Butylamino)-1-oxopentan-2-yl Acetate (4daa) Purified with a gradient 100% cyclohexane to 50:50 cyclohexane–EtOAc. Yield: 69% (446 mg), beige solid; mp 108–110 °C. 1H NMR (300 MHz, CDCl3): δ = 5.79 (br s, 1 H), 4.99 (t, J = 6.0 Hz), 2.10 (s, 3 H), 1.93–1.61 (m, 2 H), 1.51–1.06 (m, 2 H), 1.32 (s, 9 H), 0.88 (t, J = 7.3 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 169.7, 169.0, 74.3, 51.3, 34.0, 28.7, 21.1, 18.1, 13.8. HRMS (ESI): m/z [M + Na]+ calcd for C11H21NO3Na: 238.1414; found: 238.1413. 2-(tert-Butylamino)-1-cyclopropyl-2-oxoethyl Acetate (4eaa) Purified with a gradient 100% cyclohexane to 50:50 cyclohexane–EtOAc. Yield: 45% (288 mg), white solid; mp 100–101 °C. 1H NMR (300 MHz, CDCl3): δ = 5.78 (br s, 1 H), 4.46 (d, J = 8.5 Hz, 1 H), 2.11 (s, 3 H), 1.33 (s, 9 H), 1.31–1.08 (m, 1 H), 0.73–0.32 (m, 4 H). 13C NMR (101 MHz, CDCl3): δ = 169.9, 168.3, 51.4, 28.8, 21.1, 13.2, 3.2, 3.0. HRMS (ESI): m/z [M + Na]+ calcd for C11H19NO3Na: 236.1257; found: 236.1257.
  • 34 Tumanov VV, Tishkov AA, Mayr H. Angew. Chem. Int. Ed. 2007; 46: 3563