Planta Med
DOI: 10.1055/a-2328-2644
Original Papers

Population Pharmacokinetic of the Diterpenes ent-Polyalthic Acid and Dihydro-ent-Agathic Acid from Copaifera Duckei Oil Resin in Rats

Fábio Alves Aguila
1   Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
,
Jairo Kenupp Bastos
2   School of Pharmaceutical Sciences of Ribeirão Preto – University of São Paulo, Ribeirão Preto, Brazil
,
Rodrigo C. S. Veneziani
1   Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
,
Glauco Henrique Balthazar Nardotto
2   School of Pharmaceutical Sciences of Ribeirão Preto – University of São Paulo, Ribeirão Preto, Brazil
,
Larissa Costa Oliveira
1   Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
,
Adriana Rocha
2   School of Pharmaceutical Sciences of Ribeirão Preto – University of São Paulo, Ribeirão Preto, Brazil
,
Vera Lucia Lanchote
2   School of Pharmaceutical Sciences of Ribeirão Preto – University of São Paulo, Ribeirão Preto, Brazil
,
Sérgio Ricardo Ambrósio
1   Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
› Author Affiliations
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico
Supported by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Supported by: Fundação de Amparo à Pesquisa do Estado de São Paulo 2011/13630-7

Abstract

Copaifera duckei oleoresin is a plant product extensively used by the Brazilian population for multiple purposes, such as medicinal and cosmetic. Despite its ethnopharmacological relevance, there is no pharmacokinetic data on this important medicinal plant. Due to this, we determined the pharmacokinetic profile of the major nonvolatile compounds of C. duckei oleoresin. The diterpenes ent-polyalthic acid and dihydro-ent-agathic acid correspond to approximately 40% of the total oleoresin. Quantification was performed using LC-MS/MS, and the validated analytical method showed to be precise, accurate, robust, reliable, and linear between 0.57 and 114.74 µg/mL plasma and 0.09 to 18.85 µg/mL plasma, respectively, for ent-polyalthic acid and dihydro-ent-agathic acid, making it suitable for application in preclinical pharmacokinetic studies. Wistar rats received a single 200 mg/kg oral dose (gavage) of C. duckei oleoresin, and blood was collected from their caudal vein through 48 h. Population pharmacokinetics analysis of ent-polyalthic and dihydro-ent-agathic acids in rats was evaluated using nonlinear mixed-effects modeling conducted in NONMEN software. The pharmacokinetic parameters of ent-polyalthic acid were absorption constant rate = 0.47 h−1, central and peripheral apparent volume of distribution = 0.04 L and 2.48 L, respectively, apparent clearance = 0.15 L/h, and elimination half-life = 11.60 h. For dihydro-ent-agathic acid, absorption constant rate = 0.28 h−1, central and peripheral apparent volume of distribution = 0.01 L and 0.18 L, respectively, apparent clearance = 0.04 L/h, and elimination half-life = 3.49 h. The apparent clearance, central apparent volume of distribution, and peripheral apparent volume of distribution of ent-polyalthic acid were approximately 3.75, 4.00-, and 13.78-folds higher than those of dihydro-ent-agathic.



Publication History

Received: 22 November 2023

Accepted after revision: 15 May 2024

Accepted Manuscript online:
15 May 2024

Article published online:
18 June 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Arruda C, Mejia JAA, Ribeiro VP, Borges CHG, Martins CHG, Veneziani RCS, Ambrosio SR, Bastos JK. Occurrence, chemical composition, biological activities and analytical methods on Copaifera genus-A review. Biomed Pharmacother 2019; 109: 1-20
  • 2 Cardinelli CC, Silva JEAE, Ribeiro R, Veiga VF, dos Santos EP, de Freitas ZMF. Toxicological effects of copaiba oil (Copaifera spp.) and its active components. Plants (Basel) 2023; 12: e1054
  • 3 Veiga VF, Pinto AC. The Copaifera L. genus. Quim Nova 2002; 25: 273-286
  • 4 Veiga VF, Zunino L, Calixto JB, Patitucci ML, Pinto AC. Phytochemical and antioedematogenic studies of commercial copaiba oils available in Brazil. Phytother Res 2001; 15: 476-480
  • 5 Carneiro LJ, Tasso TO, Santos MFC, Goulart MO, dos Santos R, Bastos JK, da Silva JJM, Crotti AEM, Parreira RLT, Orenha RP, Veneziani RCS, Ambrosio SR. Copaifera multijuga, Copaifera pubiflora and Copaifera trapezifolia oleoresins: Chemical characterization and in vitro cytotoxic potential against tumoral cell lines. J Brazil Chem Soc 2020; 31: 1679-1689
  • 6 Carneiro LJ, Bianchi TC, da Silva JJM, Oliveira LC, Borges CHG, Lemes DC, Bastos JK, Veneziani RCS, Ambrosio SR. Development and validation of a rapid and reliable RP-HPLC-PDA method for the quantification of six diterpenes in Copaifera duckei, Copaifera reticulata and Copaifera multijuga oleoresins. J Brazil Chem Soc 2018; 29: 729-737
  • 7 da Silva JJM, Crevelin EJ, Carneiro LJ, Rogez H, Veneziani RCS, Ambrósio SR, Beraldo Moraes LA, Bastos JK. Development of a validated ultra-high-performance liquid chromatography tandem mass spectrometry method for determination of acid diterpenes in Copaifera oleoresins. J Chromatogr A 2017; 1515: 81-90
  • 8 da Trindade R, da Silva JK, Setzer WN. Copaifera of the neotropics: A review of the phytochemistry and pharmacology. Int J Mol Sci 2018; 19: 1511
  • 9 Sachetti CG, de Carvalho RR, Paumgartten FJR, Lameira OA, Caldas ED. Developmental toxicity of copaiba tree (Copaifera reticulata Ducke, Fabaceae) oleoresin in rat. Food Chem Toxicol 2011; 49: 1080-1085
  • 10 Gasparetto J, Peccinini R, de Francisco T, Cerqueira L, Campos F, Pontarolo R. A kinetic study of the main guaco metabolites using syrup formulation and the identification of an alternative route of coumarin metabolism in humans. PLoS One 2015; 10: e0118922
  • 11 Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, van de Vorstenbosch C. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 2001; 21: 15-23
  • 12 Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7: 1-13
  • 13 Furtado RA, de Oliveira PF, Senedese JM, Ozelin SD, de Souza LDR, Leandro LF, de Oliveira WL, da Silva JJM, Oliveira LC, Rogez H, Ambrósio SR, Veneziani RCS, Bastos JK, Tavares DC. Assessment of toxicogenetic activity of oleoresins and leaves extracts of six Copaifera species for prediction of potential human risks. J Ethnopharmacol 2018; 221: 119-125
  • 14 Castro-E-Silva jr. O, Zucoloto S, Ramalho FS, Ramalho LNZ, Reis JMC, Bastos AAC, Brito MVH. Antiproliferative activity of Copaifera duckei oleoresin on liver regeneration in rats. Phytother Res 2004; 18: 92-94
  • 15 Kouzi SA, Mcmurtry RJ, Nelson SD. Hepatotoxicity of germander (Teucrium chamaedrys L.) and one of its constituent neoclerodane diterpenes teucrin A in the mouse. Chem Res Toxicol 1994; 7: 850-856
  • 16 Borges CHG, Cruz MG, Carneiro LJ, da Silva JJM, Bastos JK, Tavares DC, de Oliveira PF, Rodrigues V, Veneziani RCS, Parreira RLT, Caramori GF, Nagurniak GR, Magalhães LG, Ambrósio SR. Copaifera duckei oleoresin and its main nonvolatile terpenes: In vitro schistosomicidal properties. Chem Biodivers 2016; 13: 1348-1356
  • 17 EMEA/CHMP/EWP. Guideline on bioanalytical method validation, Guideline Rev. 1 Corr. 2, (07/21 2011). https://www.ema.europa.eu/en/bioanalytical-method-validation Accessed: 02/13 2020
  • 18 Bauer RJ. NONMEM tutorial part I: Description of commands and options, with simple examples of population analysis. CPT Pharmacometrics Syst Pharmacol 2019; 8: 525-537
  • 19 Bauer RJ. NONMEM tutorial part II: Estimation methods and advanced examples. CPT Pharmacometrics Syst Pharmacol 2019; 8: 538-556
  • 20 Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: Introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol 2013; 2: e38
  • 21 Nguyen THT, Mouksassi MS, Holford N, Al-Huniti N, Freedman I, Hooker AC, John J, Karlsson MO, Mould DR, Ruixo JJP, Plan EL, Savic R, van Hasselt JGC, Weber B, Zhou C, Comets E, Mentre F. Model evaluation of continuous data pharmacometric models: Metrics and graphics. CPT Pharmacometrics Syst Pharmacol 2017; 6: 87-109
  • 22 Maitre PO, Buhrer M, Thomson D, Stanski DR. A three-step approach combining Bayesian regression and NONMEM population analysis: Application to midazolam. J Pharmacokinet Biopharm 1991; 19: 377-384
  • 23 Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. Aaps J 2011; 13: 143-151
  • 24 Dowd PA, Pardo-Iguzquiza E, Egozcue JJ. The total bootstrap median: A robust and efficient estimator of location and scale for small samples. J Appl Stat 2015; 42: 1306-1321