Synthesis 2024; 56(13): 1999-2004
DOI: 10.1055/a-2314-1715
paper

Synthesis and Dynamic Behaviors of 5,7,8,10-Tetraphenyl-1,14-dianilinotripyrrins

Ayane Nishiyama
a   Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
b   Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 615-8510, Japan
,
Yusuke Matsuo
a   Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
b   Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 615-8510, Japan
,
Shu Seki
b   Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 615-8510, Japan
,
b   Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 615-8510, Japan
› Author Affiliations
This work was supported by JSPS KAKENHI (Grant Numbers 21H05480, 22H00314 and 23K17942) and CREST, Japan Science and Technology Agency (JST).


Abstract

5,7,8,10-Tetraphenyl-1,14-di(arylamino)tripyrrins have been synthesized via 5,7,8,10-tetraphenyltripyrrane. The structures and dynamic equilibrium between single helical monomer and double helical dimer were analyzed by 1H NMR spectra and X-ray diffraction analysis. Their dimerization association constants in CDCl3 are larger than those of previously reported dianilinotripyrrin derivatives. In DMSO, they exhibited luminescence around 700 nm as a consequence of restricted rotational relaxation by the phenyl groups installed at the 7,8-positions.

Supporting Information



Publication History

Received: 15 February 2024

Accepted after revision: 25 April 2024

Accepted Manuscript online:
25 April 2024

Article published online:
15 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bröring M. Beyond Dipyrrins: Coordination Interactions and Templated Macrocyclizations of Open-Chain Oligopyrroles. In Handbook of Porphyrin Science, Vol. 8. Kadish KM, Smith KM, Guilard R. World Scientific Publishing Company; Singapore: 2010: 343-501
  • 2 Bröring M, Prikhodovski S, Cónsul Tejero E. Chem. Commun. 2007; 876
  • 3 Nishiyama A, Tanaka T. J. Porphyrins Phthalocyanines 2022; 26: 815
  • 4 Bröring M, Brandt CD, Prikhodovski S. J. Porphyrins Phthalocyanines 2003; 7: 17
  • 5 Bröring M, Brandt CD. Chem. Commun. 2001; 499
  • 6 Bröring M, Brandt CD. Chem. Commun. 2003; 2156
  • 7 Bröring M, Prikhodovski S, Brandt CD. Inorg. Chim. Acta 2004; 357: 1733
  • 8 Bröring M, Prikhodovski S, Brandt CD, Cónsul Tejero E. Chem. Eur. J. 2007; 13: 396
  • 9 Bröring M, Prikhodovski S, Cónsul Tejero E, Köhler S. Eur. J. Inorg. Chem. 2007; 1010
  • 10 Bahnmuller S, Plotzitzka J, Baabe D, Cordes B, Menzel D, Schartz K, Schweyen P, Wicht R, Bröring M. Eur. J. Inorg. Chem. 2016; 4761
  • 11 Imafuku M, Oki S, Suzuki M. ChemistrySelect 2020; 5: 7217
  • 12 Roth SD, Shkindel T, Lightner DA. Tetrahedron 2007; 63: 11030
  • 13 Dey SK, Datta S, Lightner DA. Monatsh. Chem. 2009; 140: 1171
  • 14 Shin JY, Hepperle SS, Patrick BO, Dolphin D. Chem. Commun. 2009; 2323
  • 15 Umetani M, Tanaka T, Osuka A. Chem. Sci. 2018; 9: 6853
  • 16 For another example of stable 1,14-halotripyrrins, see: Suzuki M, Imafuku M. Chem. Lett. 2023; 52: 22
  • 17 Nishiyama A, Ueta K, Umetani M, Akamatsu Y, Tanaka T. Chem. Asian J. 2022; 17: e202200562
  • 18 Ueta K, Umetani M, Osuka A, Pantoş GD, Tanaka T. Chem. Commun. 2021; 57: 2617
  • 19 Fukuda Y, Akamatsu Y, Umetani M, Kise K, Kato K, Osuka A, Tanaka T. Org. Biomol. Chem. 2023; 21: 1158
  • 20 Loudet A, Burgess K. Chem. Rev. 2007; 107: 4891
  • 21 Kee HL, Kirmaier C, Yu L, Thamyongkit P, Youngblood WJ, Calder ME, Ramos L, Noll BC, Bocian DF, Scheidt WR, Birge RR, Lindsey JS, Holten D. J. Phys. Chem. B 2005; 109: 20433
  • 22 Gałęzowski M, Jaźwiński J, Lewtak JP, Gryko DT. J. Org. Chem. 2009; 74: 5610
  • 23 Li Z, Zhang L, Miao W, Shang Y, Wang L, Yu C, Jiao L, Hao E. Org. Lett. 2023; 25: 4483
  • 24 Li Z, Zhang L, Wu Q, Li H, Kang Z, Yu C, Hao E, Jiao L. J. Am. Chem. Soc. 2022; 144: 6692
  • 25 It was difficult to determine the dimerization association constants for 4a and 4b in CDCl3 because of almost complete association (i.e., Kd >103). A small difference between 4a and 4b might be ascribed to the steric repulsion between the trifluoromethyl group and tripyrrin core.
  • 26 A preliminary measurement for the fluorescence lifetime using time-correlated single photon counting technique revealed the lifetime of 0.75 ns for 4b. See SI for details.
  • 27 Swain A, Cho B, Gautam R, Curtis CJ, Tomat E, Huxter V. J. Phys. Chem. B 2019; 123: 5524
  • 28 CCDC 2331837 (4a) and 2331836 (4b) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures