CC BY-NC-ND 4.0 · Thromb Haemost
DOI: 10.1055/a-2311-0117
Cellular Haemostasis and Platelets

Multi-phased Kinetics and Interaction of Protein Kinase Signaling in Glycoprotein VI-Induced Platelet αIIbβ3 Integrin Activation and Degranulation

Pengyu Zhang
1   Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
2   Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
3   Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
,
Saskia von Ungern-Sternberg
1   Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
,
Luisa Hastenplug
1   Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
,
Fiorella A. Solari
2   Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
,
Albert Sickmann
2   Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
4   Medizinische Fakultät, Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
5   Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom
,
3   Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
,
3   Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
6   Synapse Research Institute Maastricht, Koningin Emmaplein, Maastricht, The Netherlands
,
Ulrich Walter
1   Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
,
1   Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
› Author Affiliations


Abstract

Background Platelet glycoprotein VI (GPVI) stimulation activates the tyrosine kinases Syk and Btk, and the effector proteins phospholipase Cγ 2 (PLCγ2) and protein kinase C (PKC). Here, the activation sequence, crosstalk, and downstream effects of this Syk-Btk-PKC signalosome in human platelets were analyzed.

Methods and Results Using immunoblotting, we quantified 14 regulated phospho-sites in platelets stimulated by convulxin with and without inhibition of Syk, Btk, or PKC. Convulxin induced fast, reversible tyrosine phosphorylation (pY) of Syk, Btk, LAT, and PLCγ2, followed by reversible serine/threonine phosphorylation (pS/T) of Syk, Btk, and downstream kinases MEK1/2, Erk1/2, p38, and Akt. Syk inhibition by PRT-060318 abolished all phosphorylations, except Syk pY352. Btk inhibition by acalabrutinib strongly decreased Btk pY223/pS180, Syk pS297, PLCγ2 pY759/Y1217, MEK1/2 pS217/221, Erk1/2 pT202/Y204, p38 pT180/Y182, and Akt pT308/S473. PKC inhibition by GF109203X abolished most pS/T phosphorylations except p38 pT180/Y182 and Akt pT308, but enhanced most Y-phosphorylations. Acalabrutinib, but not GF109203X, suppressed convulxin-induced intracellular Ca2+ mobilization, whereas all three protein kinase inhibitors abolished degranulation and αIIbβ3 integrin activation assessed by flow cytometry. Inhibition of autocrine ADP effects by AR-C669931 partly diminished convulxin-triggered degranulation.

Conclusion Kinetic analysis of GPVI-initiated multisite protein phosphorylation in human platelets demonstrates multiple phases and interactions of tyrosine and serine/threonine kinases with activation-altering feedforward and feedback loops partly involving PKC. The protein kinase inhibitor effects on multisite protein phosphorylation and functional readouts reveal that the signaling network of Syk, Btk, and PKC controls platelet granule exocytosis and αIIbβ3 integrin activation.

Authors' Contribution

Conceptualization: K.J. and U.W.; methodology: P.Z., S.v.U.-S., L.H.; data curation: P.Z.; formal analysis: P.Z. and U.W.; writing—original draft preparation: P.Z., U.W., and K.J.; writing—review and editing: P.Z., U.W., K.J., F.A.S., A.S., J.W.M.H., and M.J.E.K.; funding and supervision: A.S. and K.J.


Supplementary Material



Publication History

Received: 31 October 2023

Accepted: 16 April 2024

Accepted Manuscript online:
23 April 2024

Article published online:
15 May 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Gaertner F, Massberg S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat Rev Immunol 2019; 19 (12) 747-760
  • 2 Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 2023; 20 (09) 583-599
  • 3 Jurk K, Kehrel BE. Platelets: physiology and biochemistry. Semin Thromb Hemost 2005; 31 (04) 381-392
  • 4 Versteeg HH, Heemskerk JWM, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev 2013; 93 (01) 327-358
  • 5 Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res 2006; 99 (12) 1293-1304
  • 6 Senis YA, Mazharian A, Mori J. Src family kinases: at the forefront of platelet activation. Blood 2014; 124 (13) 2013-2024
  • 7 Poole A, Gibbins JM, Turner M. et al. The Fc receptor gamma-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J 1997; 16 (09) 2333-2341
  • 8 Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129 (01) 12-23
  • 9 Mócsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010; 10 (06) 387-402
  • 10 Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton's tyrosine kinase in B cells and malignancies. Mol Cancer 2018; 17 (01) 57
  • 11 Bradshaw JM. The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal 2010; 22 (08) 1175-1184
  • 12 Quek LS, Bolen J, Watson SP. A role for Bruton's tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 1998; 8 (20) 1137-1140
  • 13 Ribes A, Oprescu A, Viaud J. et al. Phosphoinositide 3-kinases in platelets, thrombosis and therapeutics. Biochem J 2020; 477 (22) 4327-4342
  • 14 Bye AP, Unsworth AJ, Desborough MJ. et al. Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib. Blood Adv 2017; 1 (26) 2610-2623
  • 15 Nicolson PLR, Hughes CE, Watson S. et al. Inhibition of Btk by Btk-specific concentrations of ibrutinib and acalabrutinib delays but does not block platelet aggregation mediated by glycoprotein VI. Haematologica 2018; 103 (12) 2097-2108
  • 16 Busygina K, Jamasbi J, Seiler T. et al. Oral Bruton tyrosine kinase inhibitors selectively block atherosclerotic plaque-triggered thrombus formation in humans. Blood 2018; 131 (24) 2605-2616
  • 17 Series J, Garcia C, Levade M. et al. Differences and similarities in the effects of ibrutinib and acalabrutinib on platelet functions. Haematologica 2019; 104 (11) 2292-2299
  • 18 Cheung HYF, Moran LA, Sickmann A, Heemskerk JWM, Garcia Á, Watson SP. Inhibition of Src but not Syk causes weak reversal of GPVI-mediated platelet aggregation measured by light transmission aggregometry. Platelets 2022; 33 (08) 1293-1300
  • 19 Byrd JC, Harrington B, O'Brien S. et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med 2016; 374 (04) 323-332
  • 20 Series J, Ribes A, Garcia C. et al. Effects of novel Btk and Syk inhibitors on platelet functions alone and in combination in vitro and in vivo. J Thromb Haemost 2020; 18 (12) 3336-3351
  • 21 Tullemans BME, Karel MFA, Léopold V. et al. Comparison of inhibitory effects of irreversible and reversible Btk inhibitors on platelet function. eJHaem 2021; 2 (04) 685-699
  • 22 Babur Ö, Melrose AR, Cunliffe JM. et al. Phosphoproteomic quantitation and causal analysis reveal pathways in GPVI/ITAM-mediated platelet activation programs. Blood 2020; 136 (20) 2346-2358
  • 23 Zheng TJ, Lofurno ER, Melrose AR. et al. Assessment of the effects of Syk and BTK inhibitors on GPVI-mediated platelet signaling and function. Am J Physiol Cell Physiol 2021; 320 (05) C902-C915
  • 24 Beck F, Geiger J, Gambaryan S. et al. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition. Blood 2017; 129 (02) e1-e12
  • 25 Makhoul S, Trabold K, Gambaryan S. et al. cAMP- and cGMP-elevating agents inhibit GPIbα-mediated aggregation but not GPIbα-stimulated Syk activation in human platelets. Cell Commun Signal 2019; 17 (01) 122
  • 26 Makhoul S, Dorschel S, Gambaryan S, Walter U, Jurk K. Feedback regulation of Syk by protein kinase C in human platelets. Int J Mol Sci 2019; 21 (01) 21
  • 27 Makhoul S, Kumm E, Zhang P, Walter U, Jurk K. The serine/threonine protein phosphatase 2A (PP2A) regulates Syk activity in human platelets. Int J Mol Sci 2020; 21 (23) 21
  • 28 Zhang P, Solari FA, Heemskerk JWM. et al. Differential regulation of GPVI-induced Btk and Syk activation by PKC, PKA and PP2A in human platelets. Int J Mol Sci 2023; 24 (09) 24
  • 29 Gilio K, Harper MT, Cosemans JM. et al. Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen. J Biol Chem 2010; 285 (30) 23410-23419
  • 30 Fernández DI, Provenzale I, Cheung HYF. et al. Ultra-high-throughput Ca2+ assay in platelets to distinguish ITAM-linked and G-protein-coupled receptor activation. iScience 2021; 25 (01) 103718
  • 31 Cheung HYF, Zou J, Tantiwong C. et al. High-throughput assessment identifying major platelet Ca2+ entry pathways via tyrosine kinase-linked and G protein-coupled receptors. Cell Calcium 2023; 112: 102738
  • 32 Döhrmann M, Makhoul S, Gross K. et al. CD36-fibrin interaction propagates FXI-dependent thrombin generation of human platelets. FASEB J 2020; 34 (07) 9337-9357
  • 33 Moroi AJ, Watson SP. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: haemostasis, platelet activation and antithrombotic therapy. Biochem Pharmacol 2015; 94 (03) 186-194
  • 34 Patel P, Naik UP. Platelet MAPKs-a 20+ year history: what do we really know?. J Thromb Haemost 2020; 18 (09) 2087-2102
  • 35 Reilly MP, Sinha U, André P. et al. PRT-060318, a novel Syk inhibitor, prevents heparin-induced thrombocytopenia and thrombosis in a transgenic mouse model. Blood 2011; 117 (07) 2241-2246
  • 36 Perrella G, Montague SJ, Brown HC. et al. Role of tyrosine kinase Syk in thrombus stabilisation at high shear. Int J Mol Sci 2022; 23 (01) 493
  • 37 Joshi S, Whiteheart SW. The nuts and bolts of the platelet release reaction. Platelets 2017; 28 (02) 129-137
  • 38 Manne BK, Xiang SC, Rondina MT. Platelet secretion in inflammatory and infectious diseases. Platelets 2017; 28 (02) 155-164
  • 39 Hechler B, Gachet C. Purinergic receptors in thrombosis and inflammation. Arterioscler Thromb Vasc Biol 2015; 35 (11) 2307-2315
  • 40 Senis YA. Protein-tyrosine phosphatases: a new frontier in platelet signal transduction. J Thromb Haemost 2013; 11 (10) 1800-1813
  • 41 Jurk K, Walter U. New insights into platelet signalling pathways by functional and proteomic approaches. Hamostaseologie 2019; 39 (02) 140-151
  • 42 Kumm EJ, Pagel O, Gambaryan S. et al. The cell cycle checkpoint system MAST(L)-ENSA/ARPP19-PP2A is targeted by cAMP/PKA and cGMP/PKG in anucleate human platelets. Cells 2020; 9 (02) 9
  • 43 Kunapuli SP, Tsygankov AY. TULA-family regulators of platelet activation. Int J Mol Sci 2022; 23 (23) 14910
  • 44 Burkhart JM, Vaudel M, Gambaryan S. et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120 (15) e73-e82
  • 45 Dinur-Schejter Y, Zaidman I, Mor-Shaked H, Stepensky P. The clinical aspect of adaptor molecules in T cell signaling: lessons learnt from inborn errors of immunity. Front Immunol 2021; 12: 701704
  • 46 Watanabe D, Hashimoto S, Ishiai M. et al. Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J Biol Chem 2001; 276 (42) 38595-38601
  • 47 Kang SW, Wahl MI, Chu J. et al. PKCbeta modulates antigen receptor signaling via regulation of Btk membrane localization. EMBO J 2001; 20 (20) 5692-5702
  • 48 Bohnenberger H, Oellerich T, Engelke M, Hsiao HH, Urlaub H, Wienands J. Complex phosphorylation dynamics control the composition of the Syk interactome in B cells. Eur J Immunol 2011; 41 (06) 1550-1562
  • 49 Mohammad DK, Nore BF, Gustafsson MO, Mohamed AJ, Smith CIE. Protein kinase B (AKT) regulates SYK activity and shuttling through 14-3-3 and importin 7. Int J Biochem Cell Biol 2016; 78: 63-74
  • 50 Jakubowski JA, Payne CD, Weerakkody GJ. et al. Dose-dependent inhibition of human platelet aggregation by prasugrel and its interaction with aspirin in healthy subjects. J Cardiovasc Pharmacol 2007; 49 (03) 167-173
  • 51 Gelens L, Qian J, Bollen M, Saurin AT. The importance of kinase-phosphatase integration: lessons from mitosis. Trends Cell Biol 2018; 28 (01) 6-21