Synlett
DOI: 10.1055/a-2310-0880
letter

Ligand-Promoted Palladium-Catalyzed β-C(sp3)–H Arylation of Ketones Using Acetohydrazide as a Transient Directing Group

Kai Jia
,
Junjie Wang
,
Xuan Wang
,
Chao Jiang
This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 21772092).


Abstract

A palladium-catalyzed β-C(sp3)–H arylation of aliphatic ketones by using acetohydrazide as a transient directing group has been developed. The reaction proceeds through a less-favored [5,5]-bicyclic palladacycle intermediate and is promoted by a pyridine ligand.

Supporting Information



Publication History

Received: 05 April 2024

Accepted after revision: 20 April 2024

Accepted Manuscript online:
20 April 2024

Article published online:
29 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For reviews, see:
    • 1a Majumdar P, Pati A, Patra M, Behera RK, Behera AK. Chem. Rev. 2014; 114: 2942
    • 1b Lei J, Xie W, Li J, Wu Y, Xie X. Eur. J. Org. Chem. 2021; 4364 For selected recent reports, see
    • 1c Chernov NM, Kustin RP, Pypa YV, Anisimov SO, Spiridonova DV, Shutov RV, Yakovleva IP. Adv. Synth. Catal. 2024; 366: 277
    • 1d Yang J, Wang C, Huang B, Zhou H, Li J, Liu X. Org. Lett. 2024; 26: 498
    • 1e Tello-Aburto R, Lucero AN, Rogelj S. Tetrahedron Lett. 2014; 55: 6266
    • 1f Oh H, Kim H, Kim I. J. Org. Chem. 2023; 88: 11748
    • 1g Komogortsev AN, Lichitskii BV, Melekhina VG. Org. Biomol. Chem. 2023; 21: 7224
    • 1h Tyagi A, Hazra CK. Org. Chem. Front. 2024; 11: 1450
    • 1i Halloran MW, Hudecek C, Burkart MD. Org. Process Res. Dev. 2023; 27: 1677
    • 1j Chaudhry F, Abdullah S, un-Nisa M, Hayat A, Ahmad HA, Aslam S, Ashraf M, Munawar MA. ChemistrySelect 2024; 9: e202304160
  • 2 Byrkit GD, Michalek GA. Ind. Eng. Chem. 1950; 42: 1862
    • 3a Ergenç N, Günay NS, Demirdamar R. Eur. J. Med. Chem. 1998; 33: 143
    • 3b Todeschini AR, de Miranda AL. P, da Silva KC. M, Parrini SC, Barreiro EJ. Eur. J. Med. Chem. 1998; 33: 189
    • 3c Dragostin I, Dragostin OM, Samal SK, Dash S, Tatia R, Dragan M, Confederat L, Ghiciuc CM, Diculencu D, Lupușoru CE, Zamfir CL. Eur. J. Pharm. Sci. 2019; 137: 104974
    • 3d Laborde J, Deraeve C, Bernardes-Génisson V. ChemMedChem 2017; 12: 1657
    • 3e Fang H, Chen Z, Liu Y, Zhang T, Chang J, Li Z, Zhang L, Sui J, Ru J, Gu Y, Hua X. J. Agric. Food Chem. 2023; 71: 920

      For selected examples, see:
    • 4a Abdel-Rhman MH, Samir G, Hussien MA, Hosny NM. Polyhedron 2024; 247: 116709
    • 4b Woźniczka M, Szajdzinska-Pietek E, Jezierska J, Pasternak B, Gądek-Sobczyńska J, Kufelnicki A. Inorg. Chim. Acta 2017; 455: 659
    • 4c Yang L, Liu X, Yang T, Chen Z, Guo J, Zheng L, Xiao X, Zeng G, Luo X, Luo S. Resour., Conserv. Recycl. 2023; 191: 106884
    • 5a Prabhakar Ganesh PS. K, Muthuraja P, Gopinath P. Org. Lett. 2023; 25: 8361
    • 5b Su B, Wei J.-b, Wu W.-l, Shi Z.-j. ChemCatChem 2015; 7: 2986
    • 5c Yu B, Chen Y, Hong M, Duan P, Gan S, Chao H, Zhao Z, Zhao J. Chem. Commun. 2015; 51: 14365
    • 5d Li H, Lu Y, Xu N, Jin X, Chen T, Yu J, Liu J. J. Org. Chem. 2024; 89: 1301

      For reviews, see:
    • 6a Wu Y, Shi B. Youji Huaxue 2020; 40: 3517
    • 6b Goswami N, Bhattacharya T, Maiti D. Nat. Rev. Chem. 2021; 5: 646
    • 6c Higham JI, Bull JA. Org. Biomol. Chem. 2020; 18: 7291
    • 6d Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
    • 6e Amistadi-Revol H, Liu S, Prévost S. Eur. J. Org. Chem. 2023; 26: e202300582 For more recent reports, see
    • 6f Zhang X.-L, Wang M.-Y, Liu H.-J, Wang Y.-Q. Org. Lett. 2024; 26: 41
    • 6g Xu Z, Li Z, Liu C, Yang K, Ge H. Molecules 2024; 29: 259
    • 7a Ma F, Lei M, Hu L. Org. Lett. 2016; 18: 2708
    • 7b Chen J, Bai C, Tong X, Liu D, Bao Y.-S. RSC Adv. 2020; 10: 12192
    • 7c Bai C, Chao B, Muschin T, Bao A, Baiyin M, Liu D, Bao Y.-S. Chem. Commun. 2021; 57: 11229
  • 8 Wen F, Li Z. Adv. Synth. Catal. 2020; 362: 133
  • 9 Chen J, Bai C, Ma H, Liu D, Bao Y.-S. Chin. Chem. Lett. 2021; 32: 465
    • 10a Li Y.-H, Ouyang Y, Chekshin N, Yu J.-Q. J. Am. Chem. Soc. 2022; 144: 4727
    • 10b Wang J, Dong C, Wu L, Xu M, Lin J, Wei K. Adv. Synth. Catal. 2018; 360: 3709
    • 11a Cheng J.-T, Xiao L.-J, Qian S.-Q, Zhuang Z, Liu A, Yu J.-Q. Angew. Chem. Int. Ed. 2022; 61: e202117233
    • 11b Zhu R.-Y, Li Z.-Q, Park HS, Senanayake CH, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 3564
  • 12 4-(2-Ethyl-3-oxobutyl)benzonitrile (4h); Typical ProcedureA 15 mL reaction tube equipped with a magnetic stirrer bar was charged with 4-iodobenzonitrile (2h; 0.2 mmol, 2.0 equiv), AgTFA (0.25 mmol, 2.5 equiv), Pd(OAc)2 (0.01 mmol, 10 mol%), and ligand L9 (0.08 mmol, 80 mol%). A solution of ketone 1a (0.1 mmol, 1.0 equiv) and TDG1 (0.05 mmol, 50 mol%) in HFIP (1.0 mL) was then added. The tube was sealed and the mixture was stirred at r.t. for 10 min, then heated at 110 °C for 24 h. When the reaction was complete, the mixture was cooled to r.t., filtered through a silica gel plug, and concentrated in vacuo. The crude reaction mixture was purified by column chromatography (silica gel, hexanes–EtOAc (10:1)] to give a colorless oil; yield: 46%. 1H NMR [500 MHz, CDCl3): δ = 7.56 (d, J = 7.7 Hz, 2 H), 7.25 (d, J = 7.5 Hz, 2 H), 2.97 (dd, J = 13.2, 8.2 Hz, 1 H), 2.73 (ddd, J = 19.2, 13.3, 6.4 Hz, 2 H), 2.03 (s, 3 H), 1.66 (dt, J = 21.7, 7.2 Hz, 1 H), 1.52 (dt, J = 17.2, 5.3 Hz, 1 H), 0.91 (t, J = 7.4 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 211.0, 145.6, 132.2, 129.7, 118.8, 110.3, 55.5, 36.9, 30.1, 24.6, 11.3. HRMS (ESI-TOF): m/z calcd [M + H]+ for C13H16NO: 202.2768; found: 202.2765.§
  • 13 Li Y.-H, Ouyang Y, Chekshin N, Yu J.-Q. ACS Catal. 2022; 12: 10581