Klin Monbl Augenheilkd 2024; 241(06): 713-721
DOI: 10.1055/a-2307-0313
Übersicht

Objektive Analyse von Hornhautnerven und dendritischen Zellen

Article in several languages: deutsch | English
Philipp Steven
1   Klinik I für Innere Medizin, Centrum für Integrierte Onkologie CIO, Uniklinik Köln, Deutschland
2   Zentrum für Augenheilkunde, AG Augenoberfläche, Uniklinik Köln, Deutschland
,
Asif Setu
2   Zentrum für Augenheilkunde, AG Augenoberfläche, Uniklinik Köln, Deutschland
› Author Affiliations

Zusammenfassung

Hornhautnerven und dendritische Zellen werden zunehmend bei der Diagnostik von Erkrankungen der Augenoberfläche als klinische Parameter mittels intravitaler Konfokalmikroskopie dargestellt. In dieser Übersichtsarbeit werden unterschiedliche Verfahren der Bildauswertung dargestellt. Die Verwendung von Deep-Learning-Algorithmen, die eine automatisierte Mustererkennung ermöglichen, wird anhand eigener Entwicklungen detailliert erläutert und mit anderen etablierten Verfahren verglichen.



Publication History

Received: 29 February 2024

Accepted: 17 March 2024

Article published online:
28 June 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Lemp MA, Dilly PN, Boyde A. Tandem-scanning (confocal) microscopy of the full-thickness cornea. Cornea 1985; 4: 205-209
  • 2 Cavanagh HD, Jester JV, Essepian J. et al. Confocal microscopy of the living eye. CLAO J 1990; 16: 65-73
  • 3 Jester JV, Andrews PM, Petroll WM. et al. In vivo, real-time confocal imaging. J Electron Microsc Tech 1991; 18: 50-60
  • 4 Bailly N, Sherif ZA, Pleyer U. et al. [Confocal microscopy in corneal dystrophies: a comparison between confocal slit scanning (ConfoScan P2) and laser scanning microscopy (Rostock Cornea Modul-HRT II)]. Klin Monbl Augenheilkd 2006; 223: 735-742
  • 5 Stave J, Slowik C, Somodi S. et al. [Keratinocyte density of the cornea in vivo. Automated measurement with a modified confocal microscopy MICROPHTHAL]. Klin Monbl Augenheilkd 1998; 213: 38-44
  • 6 Stave J, Guthoff R. [Imaging the tear film and in vivo cornea. Initial results with a modified confocal laser scanning ophthalmoscope]. Ophthalmologe 1998; 95: 104-109
  • 7 Stave J, Zinser G, Grummer G. et al. [Modified Heidelberg Retinal Tomograph HRT. Initial results of in vivo presentation of corneal structures]. Ophthalmologe 2002; 99: 276-280
  • 8 Labbe A, Khammari C, Dupas B. et al. Contribution of in vivo confocal microscopy to the diagnosis and management of infectious keratitis. Ocul Surf 2009; 7: 41-52
  • 9 Schlemm T. Nerven der Cornea. Ammon. Z Ophthalmol 1831; (01) 113-114
  • 10 Auran JD, Koester CJ, Kleiman NJ. et al. Scanning slit confocal microscopic observation of cell morphology and movement within the normal human anterior cornea. Ophthalmology 1995; 102: 33-41
  • 11 Shaheen BS, Bakir M, Jain S. Corneal nerves in health and disease. Surv Ophthalmol 2014; 59: 263-285
  • 12 Liu J, Li Z. Resident Innate Immune Cells in the Cornea. Front Immunol 2021; 12: 620284
  • 13 Matsumoto Y, Ibrahim OMA. Application of In Vivo Confocal Microscopy in Dry Eye Disease. Invest Ophthalmol Vis Sci 2018; 59: DES41-DES47
  • 14 Uchino Y, Uchino M, Mizuno M. et al. Morphological alterations in corneal nerves of patients with dry eye and associated biomarkers. Exp Eye Res 2023; 230: 109438
  • 15 Cox SM, Kheirkhah A, Aggarwal S. et al. Alterations in corneal nerves in different subtypes of dry eye disease: An in vivo confocal microscopy study. Ocul Surf 2021; 22: 135-142
  • 16 Bucher F, Hos D, Matthaei M. et al. Corneal nerve alterations after Descemet membrane endothelial keratoplasty: an in vivo confocal microscopy study. Cornea 2014; 33: 1134-1139
  • 17 Liu YC, Jung ASJ, Chin JY. et al. Cross-sectional Study on Corneal Denervation in Contralateral Eyes Following SMILE Versus LASIK. J Refract Surg 2020; 36: 653-660
  • 18 Li M, Wei R, Yang W. et al. Femtosecond Laser-Assisted Allogenic Lenticule Implantation for Corneal Ectasia After LASIK: A 3-Year In Vivo Confocal Microscopic Investigation. J Refract Surg 2020; 36: 714-722
  • 19 Chao C, Zhou S, Stapleton F. et al. The structural and functional corneal reinnervation mechanism at different regions after LASIK-an in vivo confocal microscopy study. Graefes Arch Clin Exp Ophthalmol 2022; 260: 163-172
  • 20 Serramito-Blanco M, Canadas P, Villa-Collar C. et al. Corneal Confocal Analysis after Scleral Lens Wear in Keratoconus Patients: A Pilot Study. Optom Vis Sci 2022; 99: 800-806
  • 21 Patel SV, McLaren JW, Hodge DO. et al. Confocal microscopy in vivo in corneas of long-term contact lens wearers. Invest Ophthalmol Vis Sci 2002; 43: 995-1003
  • 22 Leonardi A, Feuerman OM, Salami E. et al. Coexistence of neuropathic corneal pain, corneal nerve abnormalities, depression, and low quality of life. Eye (Lond) 2024; 38: 499-506
  • 23 Kalteniece A, Ferdousi M, Azmi S. et al. Corneal nerve loss is related to the severity of painful diabetic neuropathy. Eur J Neurol 2022; 29: 286-294
  • 24 Badian RA, Ekman L, Pripp AH. et al. Comparison of Novel Wide-Field In Vivo Corneal Confocal Microscopy With Skin Biopsy for Assessing Peripheral Neuropathy in Type 2 Diabetes. Diabetes 2023; 72: 908-917
  • 25 Keskiner-Ozturk E, Akkaya-Turhan S, Toker E. et al. Corneal nerve fiber involvement in chronic inflammatory demyelinating polyneuropathy. Neurol Sci 2023; 44: 2509-2516
  • 26 Roszkowska AM, Wylegala A, Gargiulo L. et al. Corneal Sub-Basal Nerve Plexus in Non-Diabetic Small Fiber Polyneuropathies and the Diagnostic Role of In Vivo Corneal Confocal Microscopy. J Clin Med 2023; 12: 664
  • 27 Guldiken YC, Petropoulos IN, Malik A. et al. Corneal confocal microscopy identifies corneal nerve fiber loss in patients with migraine. Cephalalgia 2023; 43: 3331024231170810
  • 28 Petropoulos IN, Bitirgen G, Ferdousi M. et al. Corneal Confocal Microscopy to Image Small Nerve Fiber Degeneration: Ophthalmology Meets Neurology. Front Pain Res (Lausanne) 2021; 2: 725363
  • 29 Oudejans LC, Niesters M, Brines M. et al. Quantification of small fiber pathology in patients with sarcoidosis and chronic pain using cornea confocal microscopy and skin biopsies. J Pain Res 2017; 10: 2057-2065
  • 30 Moein HR, Akhlaq A, Dieckmann G. et al. Visualization of microneuromas by using in vivo confocal microscopy: An objective biomarker for the diagnosis of neuropathic corneal pain?. Ocul Surf 2020; 18: 651-656
  • 31 Villani E, Galimberti D, Viola F. et al. Corneal involvement in rheumatoid arthritis: an in vivo confocal study. Invest Ophthalmol Vis Sci 2008; 49: 560-564
  • 32 Chiang JCB, Goldstein D, Tavakoli A. et al. Corneal dendritic cells and the subbasal nerve plexus following neurotoxic treatment with oxaliplatin or paclitaxel. Sci Rep 2021; 11: 22884
  • 33 Akhlaq A, Colon C, Cavalcanti BM. et al. Density and distribution of dendritiform cells in the peripheral cornea of healthy subjects using in vivo confocal microscopy. Ocul Surf 2022; 26: 157-165
  • 34 Cruzat A, Qazi Y, Hamrah P. In Vivo Confocal Microscopy of Corneal Nerves in Health and Disease. Ocul Surf 2017; 15: 15-47
  • 35 Patel DV, McGhee CN. In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review. Br J Ophthalmol 2009; 93: 853-860
  • 36 Dabbah MA, Graham J, Petropoulos IN. et al. Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging. Med Image Anal 2011; 15: 738-747 DOI: 10.1016/j.media.2011.05.016.
  • 37 Chen X, Graham J, Dabbah MA. et al. An automatic tool for quantification of nerve fibers in corneal confocal microscopy images. IEEE Trans Biomed Eng 2017; 64: 786-794 DOI: 10.1109/TBME.2016.2573642.
  • 38 Scarpa F, Grisan E, Ruggeri A. Automatic recognition of corneal nerve structures in images from confocal microscopy. Invest Ophthalmol Vis Sci 2008; 49: 4801-4807 DOI: 10.1167/iovs.08-2061.
  • 39 Kim J, Markoulli M. Automatic analysis of corneal nerves imaged using in vivo confocal microscopy. Clin Exp Optom 2018; 101: 147-161 DOI: 10.1111/cxo.12640.
  • 40 Dabbah MA, Graham J, Petropoulos I. et al. Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images. Med Image Comput Comput Assist Interv 2010; 13: 300-307 DOI: 10.1007/978-3-642-15705-9_37.
  • 41 Ting DSW, Peng L, Varadarajan AV. et al. Deep learning in ophthalmology: The technical and clinical considerations. Prog Retin Eye Res 2019; 72: 100759
  • 42 Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 2019; 29: 102-127 DOI: 10.1016/j.zemedi.2018.11.002.
  • 43 Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444 DOI: 10.1038/nature14539.
  • 44 Shen D, Wu G. Suk H Il. Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng 2017; 19: 221-248 DOI: 10.1146/annurev-bioeng-071516-044442.
  • 45 Jiang Z, Zhang H, Wang Y. et al. Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput Med Imaging Graph 2018; 68: 1-15 DOI: 10.1016/j.compmedimag.2018.04.005.
  • 46 Mishra Z, Ganegoda A, Selicha J. et al. Automated Retinal Layer Segmentation Using Graph-based Algorithm Incorporating Deep-learning-derived Information. Sci Rep 2020; 10: 1-8 DOI: 10.1038/s41598-020-66355-5.
  • 47 Sreng S, Maneerat N, Hamamoto K. et al. Deep Learning for Optic Disc Segmentation and Glaucoma Diagnosis on Retinal Images. Appl Sci 2020; 10: 4916 DOI: 10.3390/app10144916.
  • 48 Fu H, Baskaran M, Xu Y. et al. A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images. Am J Ophthalmol 2019; 203: 37-45 DOI: 10.1016/j.ajo.2019.02.028.
  • 49 Setu MAKMAK, Horstmann J, Schmidt S. et al. Deep learning-based automatic meibomian gland segmentation and morphology assessment in infrared meibography. Sci Rep 2021; 11: 7649 DOI: 10.1038/s41598-021-87314-8.
  • 50 Williams BM, Borroni D, Liu R. et al. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Diabetologia 2020; 63: 419-430 DOI: 10.1007/s00125-019-05023-4.
  • 51 Wei S, Shi F, Wang Y. et al. A Deep Learning Model for Automated Sub-Basal Corneal Nerve Segmentation and Evaluation Using In Vivo Confocal Microscopy. Transl Vis Sci Technol 2020; 9: 32 DOI: 10.1167/tvst.9.2.32.
  • 52 Colonna A, Scarpa F, Ruggeri A. Segmentation of Corneal Nerves Using a U-Net-Based Convolutional Neural Network. In: Stoyanov D. et al. Computational Pathology and Ophthalmic Medical Image Analysis. OMIA COMPAY 2018 2018. Lecture Notes in Computer Science, vol 11039. Cham: Springer; 2018: 185-192
  • 53 Oakley JD, Russakoff DB, McCarron ME. et al. Deep learning-based analysis of macaque corneal sub-basal nerve fibers in confocal microscopy images. Eye Vis (Lond) 2020; 7: 27 DOI: 10.1186/S40662-020-00192-5.
  • 54 Yıldız E, Arslan AT, Taş AY. et al. Generative Adversarial Network Based Automatic Segmentation of Corneal Subbasal Nerves on In Vivo Confocal Microscopy Images. Transl Vis Sci Technol 2021; 10: 33 DOI: 10.1167/TVST.10.6.33.
  • 55 Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A. eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Cham: Springer; 2015: 234-241
  • 56 Zhu W, Huang Y, Zeng L. et al. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys 2019; 46: 576-589 DOI: 10.1002/mp.13300.
  • 57 Nasrullah N, Sang J, Alam MS. et al. Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors (Basel) 2019; 19: 3722 DOI: 10.3390/s19173722.
  • 58 Norman B, Pedoia V, Majumdar S. Use of 2D U-net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 2018; 288: 177-185 DOI: 10.1148/radiol.2018172322.
  • 59 Setu MAK, Schmidt S, Musial G. et al. Segmentation and Evaluation of Corneal Nerves and Dendritic Cells From In Vivo Confocal Microscopy Images Using Deep Learning. Transl Vis Sci Technol 2022; 11: 24 DOI: 10.1167/TVST.11.6.24.
  • 60 He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy. Institute of Electrical and Electronics Engineers Inc.; 2017: 2980-2988
  • 61 He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: 2016: 770-778
  • 62 Lin TY, Maire M, Belongie S. et al. Microsoft COCO: Common objects in context. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8693 LNCS. Cham: Springer; 2014: 740-755