Semin Liver Dis
DOI: 10.1055/a-2299-7880
Review Article

Emerging Roles of Spatial Transcriptomics in Liver Research

Naoto Fujiwara*
1   Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
,
Genki Kimura*
1   Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
,
Hayato Nakagawa
1   Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
› Author Affiliations
Funding This research was funded by the Japan Society for the Promotion of Science KAKENHI Grant Number 21H02892, AMED Grant Number JP23fk0210130, JP23fk0210090, JP23fk0210115, the Princess Takamatsu Cancer Research Fund, Daiichi Sankyo Foundation of Life Science, and Takeda Science Foundation to H.N.


Abstract

Spatial transcriptomics, leveraging sequencing- and imaging-based techniques, has emerged as a groundbreaking technology for mapping gene expression within the complex architectures of tissues. This approach provides an in-depth understanding of cellular and molecular dynamics across various states of healthy and diseased livers. Through the integration of sophisticated bioinformatics strategies, it enables detailed exploration of cellular heterogeneity, transitions in cell states, and intricate cell–cell interactions with remarkable precision. In liver research, spatial transcriptomics has been particularly revelatory, identifying distinct zonated functions of hepatocytes that are crucial for understanding the metabolic and detoxification processes of the liver. Moreover, this technology has unveiled new insights into the pathogenesis of liver diseases, such as the role of lipid-associated macrophages in steatosis and endothelial cell signals in liver regeneration and repair. In the domain of liver cancer, spatial transcriptomics has proven instrumental in delineating intratumor heterogeneity, identifying supportive microenvironmental niches and revealing the complex interplay between tumor cells and the immune system as well as susceptibility to immune checkpoint inhibitors. In conclusion, spatial transcriptomics represents a significant advance in hepatology, promising to enhance our understanding and treatment of liver diseases.

* Equally contributed.




Publication History

Accepted Manuscript online:
04 April 2024

Article published online:
30 April 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Paris J, Henderson NC. Liver zonation, revisited. Hepatology 2022; 76 (04) 1219-1230
  • 2 Manco R, Itzkovitz S. Liver zonation. J Hepatol 2021; 74 (02) 466-468
  • 3 Burke ZD, Reed KR, Phesse TJ, Sansom OJ, Clarke AR, Tosh D. Liver zonation occurs through a beta-catenin-dependent, c-Myc-independent mechanism. Gastroenterology 2009; 136 (07) 2316-2324.e1 , 3
  • 4 Kurosaki S, Nakagawa H, Hayata Y. et al. Cell fate analysis of zone 3 hepatocytes in liver injury and tumorigenesis. JHEP Rep Innov Hepatol 2021; 3 (04) 100315
  • 5 Dobie R, Wilson-Kanamori JR, Henderson BEP. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep 2019; 29 (07) 1832-1847.e8
  • 6 Anundi I, Lähteenmäki T, Rundgren M, Moldeus P, Lindros KO. Zonation of acetaminophen metabolism and cytochrome P450 2E1-mediated toxicity studied in isolated periportal and perivenous hepatocytes. Biochem Pharmacol 1993; 45 (06) 1251-1259
  • 7 Steinman JB, Salomao MA, Pajvani UB. Zonation in NASH - a key paradigm for understanding pathophysiology and clinical outcomes. Liver Int 2021; 41 (11) 2534-2546
  • 8 Su T, Yang Y, Lai S. et al. Single-cell transcriptomics reveals zone-specific alterations of liver sinusoidal endothelial cells in cirrhosis. Cell Mol Gastroenterol Hepatol 2021; 11 (04) 1139-1161
  • 9 Gracia-Sancho J, Caparrós E, Fernández-Iglesias A, Francés R. Role of liver sinusoidal endothelial cells in liver diseases. Nat Rev Gastroenterol Hepatol 2021; 18 (06) 411-431
  • 10 Payen VL, Lavergne A, Alevra Sarika N. et al. Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. JHEP Rep Innov Hepatol 2021; 3 (03) 100278
  • 11 Guilliams M, Bonnardel J, Haest B. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 2022; 185 (02) 379-396.e38
  • 12 Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S. Laser capture microdissection: big data from small samples. Histol Histopathol 2015; 30 (11) 1255-1269
  • 13 Junker JP, Noël ES, Guryev V. et al. Genome-wide RNA tomography in the zebrafish embryo. Cell 2014; 159 (03) 662-675
  • 14 Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012; 489 (7416) 391-399
  • 15 Peng G, Suo S, Chen J. et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev Cell 2016; 36 (06) 681-697
  • 16 Ståhl PL, Salmén F, Vickovic S. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016; 353 (6294) 78-82
  • 17 Cho CS, Xi J, Si Y. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 2021; 184 (13) 3559-3572.e22
  • 18 Chen A, Liao S, Cheng M. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 2022; 185 (10) 1777-1792.e21
  • 19 Gracia Villacampa E, Larsson L, Mirzazadeh R. et al. Genome-wide spatial expression profiling in formalin-fixed tissues. Cell Genomics 2021; 1 (03) 100065
  • 20 Merritt CR, Ong GT, Church SE. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol 2020; 38 (05) 586-599
  • 21 Moses L, Pachter L. Museum of spatial transcriptomics. Nat Methods 2022; 19 (05) 534-546
  • 22 Femino AM, Fay FS, Fogarty K, Singer RH. Visualization of single RNA transcripts in situ. Science 1998; 280 (5363) 585-590
  • 23 Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 2008; 5 (10) 877-879
  • 24 Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 2015; 348 (6233) aaa6090
  • 25 Eng CL, Lawson M, Zhu Q. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 2019; 568 (7751) 235-239
  • 26 Borm LE, Mossi Albiach A, Mannens CCA. et al. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nat Biotechnol 2023; 41 (02) 222-231
  • 27 Ke R, Mignardi M, Pacureanu A. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods 2013; 10 (09) 857-860
  • 28 Andres Martin A, Lopez Barrios A, Martinez Caro A. [Pulmonary sequestration. Diagnosis of an aberrant blood vessel by CT imaging and bidimensional Doppler echography]. An Esp Pediatr 1989; 30 (01) 67-69
  • 29 Gyllborg D, Langseth CM, Qian X. et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res 2020; 48 (19) e112
  • 30 Lee H, Marco Salas S, Gyllborg D, Nilsson M. Direct RNA targeted in situ sequencing for transcriptomic profiling in tissue. Sci Rep 2022; 12 (01) 7976
  • 31 Subramanian A, Narayan R, Corsello SM. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017; 171 (06) 1437-1452.e17
  • 32 Hao Y, Stuart T, Kowalski MH. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol 2024; 42 (02) 293-304
  • 33 Svensson V, Teichmann SA, Stegle O. SpatialDE: identification of spatially variable genes. Nat Methods 2018; 15 (05) 343-346
  • 34 Maniatis S, Äijö T, Vickovic S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science 2019; 364 (6435) 89-93
  • 35 Fujiwara N, Kubota N, Crouchet E. et al. Molecular signatures of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease. Sci Transl Med 2022; 14 (650) eabo4474
  • 36 MacParland SA, Liu JC, Ma XZ. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun 2018; 9 (01) 4383
  • 37 Aizarani N, Saviano A. Sagar, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 2019; 572 (7768) 199-204
  • 38 Ramachandran P, Dobie R, Wilson-Kanamori JR. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019; 575 (7783) 512-518
  • 39 Wang S, Li K, Pickholz E. et al. An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis. Sci Transl Med 2023; 15 (677) eadd3949
  • 40 Fujiwara N, Kobayashi M, Fobar AJ. et al. A blood-based prognostic liver secretome signature and long-term hepatocellular carcinoma risk in advanced liver fibrosis. Med (N Y) 2021; 2 (07) 836-850.e10
  • 41 Moriel N, Senel E, Friedman N, Rajewsky N, Karaiskos N, Nitzan M. NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport. Nat Protoc 2021; 16 (09) 4177-4200
  • 42 Andersson A, Bergenstråhle J, Asp M. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun Biol 2020; 3 (01) 565
  • 43 Kleshchevnikov V, Shmatko A, Dann E. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat Biotechnol 2022; 40 (05) 661-671
  • 44 Cable DM, Murray E, Zou LS. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol 2022; 40 (04) 517-526
  • 45 Yang T, Alessandri-Haber N, Fury W. et al. AdRoit is an accurate and robust method to infer complex transcriptome composition. Commun Biol 2021; 4 (01) 1218
  • 46 Lopez R, Li B, Keren-Shaul H. et al. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat Biotechnol 2022; 40 (09) 1360-1369
  • 47 Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 2019; 20 (01) 296
  • 48 Svensson V. Droplet scRNA-seq is not zero-inflated. Nat Biotechnol 2020; 38 (02) 147-150
  • 49 Ma Y, Zhou X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat Biotechnol 2022; 40 (09) 1349-1359
  • 50 Rodriques SG, Stickels RR, Goeva A. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 2019; 363 (6434) 1463-1467
  • 51 Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res 2021; 49 (09) e50
  • 52 Dong R, Yuan GC. SpatialDWLS: accurate deconvolution of spatial transcriptomic data. Genome Biol 2021; 22 (01) 145
  • 53 Danaher P, Kim Y, Nelson B. et al. Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data. Nat Commun 2022; 13 (01) 385
  • 54 Zhou Z, Zhong Y, Zhang Z, Ren X. Spatial transcriptomics deconvolution at single-cell resolution using Redeconve. Nat Commun 2023; 14 (01) 7930
  • 55 Song Q, Su J. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence. Brief Bioinform 2021; 22 (05) bbaa414
  • 56 Sun D, Liu Z, Li T, Wu Q, Wang C. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing. Nucleic Acids Res 2022; 50 (07) e42
  • 57 Li H, Li H, Zhou J, Gao X. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information. Bioinformatics 2022; 38 (21) 4878-4884
  • 58 Biancalani T, Scalia G, Buffoni L. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat Methods 2021; 18 (11) 1352-1362
  • 59 Wei R, He S, Bai S. et al. Spatial charting of single-cell transcriptomes in tissues. Nat Biotechnol 2022; 40 (08) 1190-1199
  • 60 Vahid MR, Brown EL, Steen CB. et al. High-resolution alignment of single-cell and spatial transcriptomes with CytoSPACE. Nat Biotechnol 2023; 41 (11) 1543-1548
  • 61 Berglund E, Maaskola J, Schultz N. et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat Commun 2018; 9 (01) 2419
  • 62 Miller BF, Huang F, Atta L, Sahoo A, Fan J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nat Commun 2022; 13 (01) 2339
  • 63 Chidester B, Zhou T, Alam S, Ma J. SPICEMIX enables integrative single-cell spatial modeling of cell identity. Nat Genet 2023; 55 (01) 78-88
  • 64 Zhang H, Hunter MV, Chou J. et al. BayesTME: An end-to-end method for multiscale spatial transcriptional profiling of the tissue microenvironment. Cell Syst 2023; 14 (07) 605-619.e7
  • 65 Li H, Zhou J, Li Z. et al. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat Commun 2023; 14 (01) 1548
  • 66 Yan L, Sun X. Benchmarking and integration of methods for deconvoluting spatial transcriptomic data. Bioinformatics 2023; 39 (01) btac805
  • 67 Sang-aram C, Browaeys R, Seurinck R, Saeys Y. Spotless: a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics. bioRxiv 2023:2023.03.22.533802
  • 68 Wang H, Huang R, Nelson J. et al. Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues. bioRxiv 2023; DOI: 10.1101/2023.12.07.570603.
  • 69 Cook DP, Jensen KB, Wise K. et al. A comparative analysis of imaging-based spatial transcriptomics platforms. bioRxiv 2023:2023.12.13.571385
  • 70 Danaher P, Zhao E, Yang Z. et al. Insitutype: likelihood-based cell typing for single cell spatial transcriptomics. bioRxiv 2022:2022.10.19.512902
  • 71 Halpern KB, Shenhav R, Matcovitch-Natan O. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 2017; 542 (7641) 352-356
  • 72 Wei Y, Wang YG, Jia Y. et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 2021; 371 (6532) eabb1625
  • 73 Lin YH, Wei Y, Zeng Q. et al. IGFBP2 expressing midlobular hepatocytes preferentially contribute to liver homeostasis and regeneration. Cell Stem Cell 2023; 30 (05) 665-676.e4
  • 74 Hildebrandt F, Andersson A, Saarenpää S. et al. Spatial transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat Commun 2021; 12 (01) 7046
  • 75 Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 2015; 524 (7564) 180-185
  • 76 Hu S, Liu S, Bian Y. et al. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep Med 2022; 3 (10) 100754
  • 77 Halpern KB, Shenhav R, Massalha H. et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat Biotechnol 2018; 36 (10) 962-970
  • 78 Brosch M, Kattler K, Herrmann A. et al. Epigenomic map of human liver reveals principles of zonated morphogenic and metabolic control. Nat Commun 2018; 9 (01) 4150
  • 79 Watson B, Paul B, Amir-Zilberstein L. et al. Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution. bioRxiv 2024:2024.02.02.578633
  • 80 Kettner NM, Voicu H, Finegold MJ. et al. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 2016; 30 (06) 909-924
  • 81 Droin C, Kholtei JE, Bahar Halpern K. et al. Space-time logic of liver gene expression at sub-lobular scale. Nat Metab 2021; 3 (01) 43-58
  • 82 Zhao Y, Yang Y, Li Q, Li J. Understanding the unique microenvironment in the aging liver. Front Med (Lausanne) 2022; 9: 842024
  • 83 Nikopoulou C, Kleinenkuhnen N, Parekh S. et al. Spatial and single-cell profiling of the metabolome, transcriptome and epigenome of the aging mouse liver. Nat Aging 2023; 3 (11) 1430-1445
  • 84 Ben-Moshe S, Veg T, Manco R. et al. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell 2022; 29 (06) 973-989.e10
  • 85 Pita-Juarez Y, Karagkouni D, Kalavros N. et al. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. bioRxiv 2022; DOI: 10.1101/2022.10.27.514070.
  • 86 Uzun S, Zinner CP, Beenen AC. et al. Morphologic and molecular analysis of liver injury after SARS-CoV-2 vaccination reveals distinct characteristics. J Hepatol 2023; 79 (03) 666-676
  • 87 Fujiwara N, Friedman SL, Goossens N, Hoshida Y. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol 2018; 68 (03) 526-549
  • 88 GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392 (10159): 1736-1788
  • 89 Qian T, Fujiwara N, Koneru B. et al. Molecular signature predictive of long-term liver fibrosis progression to inform antifibrotic drug development. Gastroenterology 2022; 162 (04) 1210-1225
  • 90 Jeng WJ, Papatheodoridis GV, Lok ASF, Hepatitis B. Hepatitis B. Lancet 2023; 401 (10381): 1039-1052
  • 91 Yu X, Gong Q, Yu D. et al. Spatial transcriptomics reveals a low extent of transcriptionally active hepatitis B virus integration in patients with HBsAg loss. Gut 2023; 73 (05) gutjnl-2023 -330577
  • 92 Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021; 184 (10) 2537-2564
  • 93 Lee YT, Fujiwara N, Yang JD, Hoshida Y. Risk stratification and early detection biomarkers for precision HCC screening. Hepatology 2023; 78 (01) 319-362
  • 94 Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74 (11) 2913-2921
  • 95 Fujiwara N, Nakagawa H. Clinico-histological and molecular features of hepatocellular carcinoma from nonalcoholic fatty liver disease. Cancer Sci 2023; 114 (10) 3825-3833
  • 96 Boonstra K, Beuers U, Ponsioen CY. Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review. J Hepatol 2012; 56 (05) 1181-1188
  • 97 Li X, Li Y, Xiao J. et al. Unique DUOX2+ACE2+ small cholangiocytes are pathogenic targets for primary biliary cholangitis. Nat Commun 2023; 14 (01) 29
  • 98 Jiang X, Otterdal K, Chung BK. et al. Cholangiocytes modulate cluster of differentiation 100 expression in the liver and facilitate pathogenic T-helper 17 cell differentiation. Gastroenterology 2024; 166 (04) 667-679
  • 99 Jiang X, Bergquist A, Löscher BS. et al. A heterozygous germline CD100 mutation in a family with primary sclerosing cholangitis. Sci Transl Med 2021; 13 (582) eabb0036
  • 100 Chung BK, Øgaard J, Reims HM, Karlsen TH, Melum E. Spatial transcriptomics identifies enriched gene expression and cell types in human liver fibrosis. Hepatol Commun 2022; 6 (09) 2538-2550
  • 101 Newman AM, Steen CB, Liu CL. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 2019; 37 (07) 773-782
  • 102 Lee J, Kim CM, Cha JH. et al. Multiplexed digital spatial protein profiling reveals distinct phenotypes of mononuclear phagocytes in livers with advanced fibrosis. Cells 2022; 11 (21) 3387
  • 103 Sancho-Bru P, Altamirano J, Rodrigo-Torres D. et al. Liver progenitor cell markers correlate with liver damage and predict short-term mortality in patients with alcoholic hepatitis. Hepatology 2012; 55 (06) 1931-1941
  • 104 Dubuquoy L, Louvet A, Lassailly G. et al. Progenitor cell expansion and impaired hepatocyte regeneration in explanted livers from alcoholic hepatitis. Gut 2015; 64 (12) 1949-1960
  • 105 Fujiwara N, Trépo E, Raman I. et al. Plasma-signature-model for end-stage liver disease score to predict survival in severe alcoholic hepatitis. Clin Gastroenterol Hepatol 2022; 20 (03) 651-657
  • 106 Trépo E, Goossens N, Fujiwara N. et al. Combination of gene expression signature and model for end-stage liver disease score predicts survival of patients with severe alcoholic hepatitis. Gastroenterology 2018; 154 (04) 965-975
  • 107 Aguilar-Bravo B, Rodrigo-Torres D, Ariño S. et al. Ductular reaction cells display an inflammatory profile and recruit neutrophils in alcoholic hepatitis. Hepatology 2019; 69 (05) 2180-2195
  • 108 Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16 (10) 589-604
  • 109 Cancer Genome Atlas Research Network, Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017; 169 (07) 1327-1341.e23
  • 110 Hoshida Y, Nijman SM, Kobayashi M. et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009; 69 (18) 7385-7392
  • 111 Fujiwara N, Kubota N, Zhu S, Nakagawa S, Baba H, Hoshida Y. Disseminative recurrence signature for hepatocellular carcinoma from nonalcoholic fatty liver disease. Gastro Hep Adv 2023; 2 (05) 681-683
  • 112 Kubota N, Fujiwara N, Hoshida Y. Liver cancer risk-predictive molecular biomarkers specific to clinico-epidemiological contexts. Adv Cancer Res 2022; 156: 1-37
  • 113 Wu R, Guo W, Qiu X. et al. Comprehensive analysis of spatial architecture in primary liver cancer. Sci Adv 2021; 7 (51) eabg3750
  • 114 O'Rourke CJ, Salati M, Rae C. et al. Molecular portraits of patients with intrahepatic cholangiocarcinoma who diverge as rapid progressors or long survivors on chemotherapy. Gut 2023; 73 (03) DOI: 10.1136/gutjnl-2023-330748.
  • 115 Wang F, Long J, Li L. et al. Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer. Sci Adv 2023; 9 (24) eadf5464
  • 116 Vogel A, Bridgewater J, Edeline J. et al; ESMO Guidelines Committee. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 10 (03) 395-404
  • 117 Cappuyns S, Corbett V, Yarchoan M, Finn RS, Llovet JM. Critical appraisal of guideline recommendations on systemic therapies for advanced hepatocellular carcinoma: a review. JAMA Oncol 2024; 34 (02) 127-140
  • 118 Tamai Y, Fujiwara N, Tanaka T, Mizuno S, Nakagawa H. Combination therapy of immune checkpoint inhibitors with locoregional therapy for hepatocellular carcinoma. Cancers (Basel) 2023; 15 (20) 5072
  • 119 Li Z, Pai R, Gupta S. et al. Presence of onco-fetal neighborhoods in hepatocellular carcinoma is associated with relapse and response to immunotherapy. Nat Cancer 2024; 5 (01) 167-186
  • 120 Sharma A, Seow JJW, Dutertre CA. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 2020; 183 (02) 377-394.e21
  • 121 Zhu AX, Abbas AR, de Galarreta MR. et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med 2022; 28 (08) 1599-1611
  • 122 Magen A, Hamon P, Fiaschi N. et al. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat Med 2023; 29 (06) 1389-1399
  • 123 Liu Y, Xun Z, Ma K. et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol 2023; 78 (04) 770-782
  • 124 Salomao M, Yu WM, Brown Jr RS, Emond JC, Lefkowitch JH. Steatohepatitic hepatocellular carcinoma (SH-HCC): a distinctive histological variant of HCC in hepatitis C virus-related cirrhosis with associated NAFLD/NASH. Am J Surg Pathol 2010; 34 (11) 1630-1636
  • 125 Shibahara J, Ando S, Sakamoto Y, Kokudo N, Fukayama M. Hepatocellular carcinoma with steatohepatitic features: a clinicopathological study of Japanese patients. Histopathology 2014; 64 (07) 951-962
  • 126 Fujiwara N, Nakagawa H, Enooku K. et al. CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity. Gut 2018; 67 (08) 1493-1504
  • 127 Murai H, Kodama T, Maesaka K. et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology 2023; 77 (01) 77-91
  • 128 Yamada T, Fujiwara N, Kubota N. et al. Lenvatinib recruits cytotoxic GZMK+CD8 T cells in hepatocellular carcinoma. Hepatol Commun 2023; 7 (08) e0209
  • 129 Llovet JM, Kudo M, Merle P. et al; LEAP-002 Investigators. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial. Lancet Oncol 2023; 24 (12) 1399-1410
  • 130 Warner JB, Guenthner SC, Hardesty JE, McClain CJ, Warner DR, Kirpich IA. Liver-specific drug delivery platforms: applications for the treatment of alcohol-associated liver disease. World J Gastroenterol 2022; 28 (36) 5280-5299
  • 131 Zeng Q, Klein C, Caruso S. et al; HCC-AI study group. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. Lancet Oncol 2023; 24 (12) 1411-1422
  • 132 Massalha H, Bahar Halpern K, Abu-Gazala S. et al. A single cell atlas of the human liver tumor microenvironment. Mol Syst Biol 2020; 16 (12) e9682
  • 133 van den Brink SC, Alemany A, van Batenburg V. et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 2020; 582 (7812) 405-409
  • 134 Hou X, Yang Y, Li P. et al. Integrating spatial transcriptomics and single-cell RNA-seq reveals the gene expression profiling of the human embryonic liver. Front Cell Dev Biol 2021; 9: 652408
  • 135 Gao S, Shi Q, Zhang Y. et al. Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Res 2022; 32 (01) 38-53
  • 136 Wu Y, Yang S, Ma J. et al. Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level. Cancer Discov 2022; 12 (01) 134-153
  • 137 Andrews TS, Atif J, Liu JC. et al. Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol Commun 2022; 6 (04) 821-840
  • 138 Suo C, Dann E, Goh I. et al. Mapping the developing human immune system across organs. Science 2022; 376 (6597) eabo0510
  • 139 Zhao N, Zhang Y, Cheng R. et al. Spatial maps of hepatocellular carcinoma transcriptomes highlight an unexplored landscape of heterogeneity and a novel gene signature for survival. Cancer Cell Int 2022; 22 (01) 57
  • 140 Liu D, Li H, Dong H. et al. Spatial multiomics analysis reveals only minor genetic and epigenetic changes in human liver cancer stem-like cells compared with other tumor parenchymal cells. Front Cell Dev Biol 2022; 10: 810687
  • 141 Wang YF, Yuan SX, Jiang H. et al. Spatial maps of hepatocellular carcinoma transcriptomes reveal spatial expression patterns in tumor immune microenvironment. Theranostics 2022; 12 (09) 4163-4180
  • 142 Hendrikx T, Porsch F, Kiss MG. et al. Soluble TREM2 levels reflect the recruitment and expansion of TREM2+ macrophages that localize to fibrotic areas and limit NASH. J Hepatol 2022; 77 (05) 1373-1385
  • 143 Barkley D, Moncada R, Pour M. et al. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat Genet 2022; 54 (08) 1192-1201
  • 144 Stevens JP, Kolachala VL, Joshi GN, Nagpal S, Gibson G, Gupta NA. Angiotensin-converting enzyme-2 (ACE2) expression in pediatric liver disease. Appl Immunohistochem Mol Morphol 2022; 30 (10) 647-653
  • 145 Yu S, Wang H, Yang L. et al. Spatial transcriptome profiling of normal human liver. Sci Data 2022; 9 (01) 633
  • 146 Ye C, Zhu J, Wang J. et al. Single-cell and spatial transcriptomics reveal the fibrosis-related immune landscape of biliary atresia. Clin Transl Med 2022; 12 (11) e1070
  • 147 Zhang S, Yuan L, Danilova L. et al. Spatial transcriptomics analysis of neoadjuvant cabozantinib and nivolumab in advanced hepatocellular carcinoma identifies independent mechanisms of resistance and recurrence. Genome Med 2023; 15 (01) 72
  • 148 Cortese N, Carriero R, Barbagallo M. et al. High-resolution analysis of mononuclear phagocytes reveals GPNMB as a prognostic marker in human colorectal liver metastasis. Cancer Immunol Res 2023; 11 (04) 405-420
  • 149 Fang J, Singh S, Cheng C. et al. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14 (01) 4003
  • 150 Andrews TS, Nakib D, Perciani CT. et al. Single-cell, single-nucleus, and spatial transcriptomics characterization of the immunological landscape in the healthy and PSC human liver. J Hepatol 2024; :S0168-8278(24)00003-5 DOI: 10.1016/j.jhep.2023.12.023.
  • 151 Garbarino O, Lambroia L, Basso G. et al. Spatial resolution of cellular senescence dynamics in human colorectal liver metastasis. Aging Cell 2023; 22 (07) e13853
  • 152 Zhou PY, Zhou C, Gan W. et al. Single-cell and spatial architecture of primary liver cancer. Commun Biol 2023; 6 (01) 1181
  • 153 Liu G, Hu Q, Peng S. et al. The spatial and single-cell analysis reveals remodeled immune microenvironment induced by synthetic oncolytic adenovirus treatment. Cancer Lett 2024; 581: 216485
  • 154 Wang C, Chen C, Hu W, Tao L, Chen J. Revealing the role of necroptosis microenvironment: FCGBP + tumor-associated macrophages drive primary liver cancer differentiation towards cHCC-CCA or iCCA. Apoptosis 2024; 29 (3–4): 460-481
  • 155 Gan X, Dong W, You W. et al. Spatial multimodal analysis revealed tertiary lymphoid structures as a risk stratification indicator in combined hepatocellular-cholangiocarcinoma. Cancer Lett 2024; 581: 216513
  • 156 Hong JH, Yong CH, Heng HL. et al. Integrative multiomics enhancer activity profiling identifies therapeutic vulnerabilities in cholangiocarcinoma of different etiologies. Gut 2023; :gutjnl-2023-330483 DOI: 10.1136/gutjnl-2023-330483.
  • 157 Toshida K, Itoh S, Iseda N. et al. Impact of ACSL4 on the prognosis of hepatocellular carcinoma: association with cancer-associated fibroblasts and the tumour immune microenvironment. Liver Int 2024; 44 (04) 1011-1023
  • 158 Zhao R, Cheng W, Shen J. et al. Single-cell and spatiotemporal transcriptomic analyses reveal the effects of microorganisms on immunity and metabolism in the mouse liver. Comput Struct Biotechnol J 2023; 21: 3466-3477
  • 159 Jiao J, Sanchez JI, Saldarriaga OA. et al. Spatial molecular and cellular determinants of STAT3 activation in liver fibrosis progression in non-alcoholic fatty liver disease. JHEP Rep Innov Hepatol 2022; 5 (02) 100628
  • 160 Xin J, Yang T, Wu X. et al. Spatial transcriptomics analysis of zone-dependent hepatic ischemia-reperfusion injury murine model. Commun Biol 2023; 6 (01) 194
  • 161 Greenman R, Segal-Salto M, Barashi N. et al. CCL24 regulates biliary inflammation and fibrosis in primary sclerosing cholangitis. JCI Insight 2023; 8 (12) e162270
  • 162 Wood CS, Pennel KAF, Leslie H. et al. Spatially resolved transcriptomics deconvolutes prognostic histological subgroups in patients with colorectal cancer and synchronous liver metastases. Cancer Res 2023; 83 (08) 1329-1344
  • 163 Jannone G, Bonaccorsi Riani E, de Magnée C. et al. Senescence and senotherapies in biliary atresia and biliary cirrhosis. Aging (Albany NY) 2023; 15 (11) 4576-4599
  • 164 Suwatthanarak T, Thanormjit K, Suwatthanarak T. et al. Spatial transcriptomic profiling of tetraspanins in stage 4 colon cancer from primary tumor and liver metastasis. Life (Basel) 2024; 14 (01) 126
  • 165 Stickels RR, Murray E, Kumar P. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat Biotechnol 2021; 39 (03) 313-319
  • 166 Zhao T, Chiang ZD, Morriss JW. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 2022; 601 (7891) 85-91
  • 167 Lee Y, Bogdanoff D, Wang Y. et al. XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Sci Adv 2021; 7 (17) eabg4755
  • 168 Liu M, Lu Y, Yang B. et al. Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat Commun 2020; 11 (01) 2907
  • 169 Lu Y, Liu M, Yang J. et al. Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discov 2021; 7 (01) 47
  • 170 Liu J, Tran V, Vemuri VNP. et al. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing. Life Sci Alliance 2022; 6 (01) e202201701
  • 171 Hullahalli K, Dailey KG, Hasegawa Y. et al. Genetic and immune determinants of E. coli liver abscess formation. Proc Natl Acad Sci U S A 2023; 120 (51) e2310053120
  • 172 Bankhead P, Loughrey MB, Fernández JA. et al. QuPath: open source software for digital pathology image analysis. Sci Rep 2017; 7 (01) 16878
  • 173 Nault R, Saha S, Bhattacharya S, Sinha S, Maiti T, Zacharewski T. Single-cell transcriptomics shows dose-dependent disruption of hepatic zonation by TCDD in mice. Toxicol Sci 2023; 191 (01) 135-148
  • 174 Singh-Varma A, Shah AM, Liu S, Zamora R, Monga SP, Vodovotz Y. Defining spatiotemporal gene modules in liver regeneration using Analytical Dynamic Visual Spatial Omics Representation (ADViSOR). Hepatol Commun 2023; 7 (11) e0289
  • 175 Handler K, Bach K, Borrelli C. et al. Fragment-sequencing unveils local tissue microenvironments at single-cell resolution. Nat Commun 2023; 14 (01) 7775
  • 176 Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 2021; 18 (01) 100-106
  • 177 He S, Bhatt R, Brown C. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat Biotechnol 2022; 40 (12) 1794-1806
  • 178 Berg S, Kutra D, Kroeger T. et al. ilastik: interactive machine learning for (bio)image analysis. Nat Methods 2019; 16 (12) 1226-1232
  • 179 Wang X, Allen WE, Wright MA. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 2018; 361 (6400) eaat5691
  • 180 Schmidt U, Weigert M, Broaddus C, Myers G. Cell detection with star-convex polygons. Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16–20, 2018, Proceedings, Part II 11: Springer; 2018: 265-273
  • 181 Zeng H, Huang J, Zhou H. et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer's disease. Nat Neurosci 2023; 26 (03) 430-446
  • 182 Goh JJL, Chou N, Seow WY. et al. Highly specific multiplexed RNA imaging in tissues with split-FISH. Nat Methods 2020; 17 (07) 689-693