Synlett 2024; 35(18): 2138-2142
DOI: 10.1055/a-2293-3243
letter

Rapid Cyclic Acetal and Cyclic Ketal Synthesis Assisted by a Rotary Evaporator

Fuyao Jiang
a   Department of Chemistry, Xi‘an-Jiaotong Liverpool University, Suzhou, Jiangsu Province, 215123, P. R. of China
b   Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
,
Yinzhe Chen
a   Department of Chemistry, Xi‘an-Jiaotong Liverpool University, Suzhou, Jiangsu Province, 215123, P. R. of China
c   Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
,
Weiding Wang
a   Department of Chemistry, Xi‘an-Jiaotong Liverpool University, Suzhou, Jiangsu Province, 215123, P. R. of China
c   Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
,
Qian Zhang
a   Department of Chemistry, Xi‘an-Jiaotong Liverpool University, Suzhou, Jiangsu Province, 215123, P. R. of China
b   Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
› Institutsangaben
This work was supported by the Research Development Fund (RDF-20-02-30), PGRS2112027, and FOSA2212021) from Xi’an Jiaotong-Liverpool University.


Abstract

Herein, we present a rapid and efficient method for synthesizing cyclic acetals and ketals utilizing a rotary evaporator. Unlike the conventional Dean–Stark dehydration process, which typically demands extended reaction times and copious amounts of organic solvents, our approach affords the synthesis of cyclic acetals and ketals with varying ring sizes in 30 min while using minimal quantities of dimethyl sulfoxide as the solvent. This innovative protocol features high yields, fast reactions, easy operation, and broad substrate applicability.

Supporting Information



Publikationsverlauf

Eingereicht: 01. März 2024

Angenommen nach Revision: 22. März 2024

Accepted Manuscript online:
22. März 2024

Artikel online veröffentlicht:
08. April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Reader JC. Curr. Top. Med. Chem. 2004; 4: 671
    • 2a McClelland RA, Ahmad M. J. Org. Chem. 1979; 44: 1855
    • 2b Dhuique-Mayer C, Tbatou M, Carail M, Caris-Veyrat C, Dornier M, Amiot MJ. J. Agric. Food Chem. 2007; 55: 4209
  • 3 Zhao H, Zhou CH, Wu LM, Lou JY, Li N, Yang HM, Tong DS, Yu WH. Appl. Clay Sci. 2013; 74: 154
  • 5 Gregg BT, Golden KC, Quinn JF. J. Org. Chem. 2007; 72: 5890
  • 6 Wu Y.-J, Meanwell NA. J. Med. Chem. 2021; 64: 9786
  • 7 Lown JW, Sondhi SM. J. Org. Chem. 1984; 49: 2844
  • 8 Society AC. Flavors and Fragrances in Food Processing: Preparation and Characterization Methods. American Chemical Society; Washington DC: 2022
  • 9 Byeon J, Kim D, Kyeong M, Bak IG, Hong S. Chem. Mater. 2023; 35: 2133
    • 10a Abel BA, Snyder RL, Coates GW. Science 2021; 373: 783
    • 10b Kaihara S, Matsumura S, Fisher JP. Eur. J. Pharm. Biopharm. 2008; 68: 67
    • 11a Meena M, Zehra A, Swapnil P, Harish Harish, Marwal A, Yadav G, Sonigra P. Front. Chem. 2021; 9: 613343
    • 11b Ricapito NG, Ghobril C, Zhang H, Grinstaff MW, Putnam D. Chem. Rev. 2016; 116: 2664
    • 11c Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Chem. Rev. 2021; 121: 10865
  • 12 Cordes E, Bull H. Chem. Rev. 1974; 74: 581
    • 13a Dong J.-L, Yu L.-S.-H, Xie J.-W. ACS Omega 2018; 3: 4974
    • 13b Moity L, Benazzouz A, Molinier V, Nardello-Rataj V, Elmkaddem MK, De Caro P, Thiébaud-Roux S, Gerbaud V, Marion P, Aubry J.-M. Green Chem. 2015; 17: 1779
    • 14a Ley SV, Baeschlin DK, Dixon DJ, Foster AC, Ince SJ, Priepke HW, Reynolds DJ. Chem. Rev. 2001; 101: 53
    • 14b Robertson J, Stafford PM. Selective Hydroxyl Protection and Deprotection . Elsevier Science; Oxford: 2003
    • 14c Wuts PG, Greene TW. Protective Groups in Organic Synthesis . John Wiley & Sons; Hoboken: 1999: 308-322
    • 14d Wuts PG, Greene TW. Protective Groups in Organic Synthesis . John Wiley & Sons; Hoboken: 1999: 724-727
  • 15 Allinger NL, Yuh YH, Lii JH. J. Am. Chem. Soc. 1989; 111: 8551
    • 16a Gopi K, Saxena P, Nethaji M, Thirupathi N. Polyhedron 2013; 52: 1041
    • 16b Juaristi E, Notario R. J. Org. Chem. 2018; 83: 10326
  • 17 General Procedure for Synthesizing Dioxalanes The temperature of the coolant-circulation system was fixed at 0 ℃, and the rotation speed was set to 100 rpm. To a round-bottom flask, aldehyde (10 mmol), diol (30 mmol), and the corresponding acid (1 mmol) were dissolved in 0.5–2 mL DMSO, which was heated on a rotavap at 30 mbar for 0.5 h. The product is purified by silica gel chromatography.
  • 18 General Procedure for Synthesizing Dioxanes The temperature of the coolant-circulation system was fixed at 0 ℃, and the rotation speed was set to 100 rpm. To a round-bottom flask, aldehyde/ketone (10 mmol), diol (20 mmol), and the corresponding acid (1 mmol) were dissolved in 0.5–2 mL DMSO, which was heated on a rotavap at 30 mbar for 0.5 h. The product is purified by silica gel chromatography.
  • 19 Remya GS, Suresh CH. Physi. Chem. Chem. Phys. 2016; 18: 20615
    • 20a Carey FA, Sundberg RJ. Advanced Organic Chemistry: Part B: Reactions and Synthesis, Vol. 3. Springer; Heidelberg: 2007
    • 20b Carey FA, Sundberg RJ. Advanced Organic Chemistry, Part A: Structure and Mechanisms . Springer; Heidelberg: 2007
  • 21 Jasperse CP, Curran DP, Fevig TL. Chem. Rev. 1991; 91: 1237
  • 22 Tóth BL, Monory A, Egyed O, Domján A, Bényei A, Szathury B, Novák Z, Stirling A. Chem. Sci. 2021; 12: 5152
  • 23 Chen C, Bellows SM, Holland PL. Dalton Trans. 2015; 44: 16654
  • 24 Bunnett J. Q. Rev., Chem. Soc. 1958; 12: 1
  • 25 Raskil’dina G, Kuzmina US, Dzhumaev SS, Borisova YG, Ishmetova D, Vakhitova YV, Zlotskii S. Russ. Chem. Bull. 2021; 70: 475
  • 26 Lawrence NJ. J. Chem. Soc., Perkin Trans. 1 1998; 1739
  • 27 Newman MS, Harper RJ. Jr. J. Am. Chem. Soc. 1958; 80: 6350