Subscribe to RSS
DOI: 10.1055/a-2290-6711
Towards Catalytic C–H Activation Using Main Group Elements
Prof. McNally acknowledges the Albert I. Meyers Foundation for support.

This Account is dedicated to the memory of Keith Fagnou.
Abstract
Catalytic C–H activation reactions are now established as a means to directly transform organic molecules and are commonly associated with metals such as palladium, rhodium, ruthenium and iridium. This Account will describe a short number of reports demonstrating that structures containing main group elements can facilitate C–H activation processes. In particular, boron-based catalysts can promote catalytic arene C–H borylation reactions, and an emerging approach using phosphenium ions can also cleave sp2 C–H bonds. These processes use a Lewis acidic main group atom combined with a pendant base to cleave C–H bonds, which compares with metal-catalyzed reactions that proceed via concerted metalation deprotonation mechanisms.
1 Introduction
2 Metal-Catalyzed C–H Activation via CMD/AMLA Mechanisms
3 C–H Borylation via Boron-Based Catalysts
4 C–H Activation Using Phosphenium Ions
5 Conclusions
Key words
C–H activation - main group catalysis - concerted metalation–deprotonation - borylation - phosphenium ionsPublication History
Received: 16 February 2024
Accepted after revision: 19 March 2024
Accepted Manuscript online:
19 March 2024
Article published online:
05 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Kakiuchi F, Chatani N. Adv. Synth. Catal. 2003; 345: 1077
- 1b Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
- 1c Godula K, Sames D. Science 2006; 312: 67
- 1d Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
- 1e Wencel-Delord J, Droge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 1f Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
- 1g Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
- 1h Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 1i Lam NY. S, Wu K, Yu JQ. Angew. Chem. Int. Ed. 2021; 60: 15767
- 1j Rej S, Das A, Chatani N. Coord. Chem. Rev. 2021; 431: 213683
- 1k Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 1l Altus KM, Love JA. Commun. Chem. 2021; 4: 173
- 2a de Jesus R, Hiesinger K, van Gemmeren M. Angew. Chem. Int. Ed. 2023; 62: e202306659
- 2b Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
- 2c Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 2d Chen DY, Youn SW. Chem. Eur. J. 2012; 18: 9452
- 2e Docherty JH, Lister TM, McArthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Chem. Rev. 2023; 123: 7692
- 3 Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 4 Davies DL, Macgregor SA, McMullin CL. Chem. Rev. 2017; 117: 8649
- 5a Inoue M, Tsurugi H, Mashima K. Coord. Chem. Rev. 2022; 473: 214810
- 5b Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 5c Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 5d Sun CL, Li BJ, Shi ZJ. Chem. Rev. 2011; 111: 1293
- 5e Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
- 5f Liu WP, Ackermann L. ACS Catal. 2016; 6: 3743
- 5g Sauermann N, Meyer TH, Qiu YA, Ackermann L. ACS Catal. 2018; 8: 7086
- 5h Ma C, Fang P, Mei TS. ACS Catal. 2018; 8: 7179
- 5i Meyer TH, Finger LH, Gandeepan P, Ackermann L. Trends Chem. 2019; 1: 63
- 5j Guillemard L, Wencel-Delord J. Beilstein J. Org. Chem. 2020; 16: 1754
- 6 Chu T, Nikonov GI. Chem. Rev. 2018; 118: 3608
- 7 Ingleson MJ. ACS Catal. 2023; 13: 7691
- 8 Gorelsky SI, Lapointe D, Fagnou K. J. Am. Chem. Soc. 2008; 130: 10848
- 9 Boutadla Y, Davies DL, Macgregor SA, Poblador-Bahamonde AI. Dalton Trans. 2009; 5820
- 10a Legare MA, Courtemanche MA, Rochette E, Fontaine FG. Science 2015; 349: 513
- 10b Legare Lavergne J, Jayaraman A, Misal Castro LC, Rochette E, Fontaine FG. J. Am. Chem. Soc. 2017; 139: 14714
- 10c Jayaraman A, Misal Castro LC, Fontaine FG. Org. Process Res. Dev. 2018; 22: 1489
- 11a Mkhalid IA, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 11b Larsen MA, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4287
- 11c Cho JY, Tse MK, Holmes D, Maleczka RE. Jr, Smith MR. III. Science 2002; 295: 305
- 11d Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
- 12a Stephan DW, Erker G. Angew. Chem. Int. Ed. 2015; 54: 6400
- 12b Jupp AR, Stephan DW. Trends Chem. 2019; 1: 35
- 13 Chernichenko K, Lindqvist M, Kotai B, Nieger M, Sorochkina K, Papai I, Repo T. J. Am. Chem. Soc. 2016; 138: 4860
- 14 Rochette E, Desrosiers V, Soltani Y, Fontaine FG. J. Am. Chem. Soc. 2019; 141: 12305
- 15a Del Grosso A, Pritchard RG, Muryn CA, Ingleson MJ. Organometallics 2010; 29: 241
- 15b Del Grosso A, Singleton PJ, Muryn CA, Ingleson MJ. Angew. Chem. Int. Ed. 2011; 50: 2102
- 15c Osi A, Mahaut D, Tumanov N, Fusaro L, Wouters J, Champagne B, Chardon A, Berionni G. Angew. Chem. Int. Ed. 2022; 61: e202112342
- 16a Lv J, Chen X, Xue X.-S, Zhao B, Liang Y, Wang M, Jin L, Yuan Y, Han Y, Zhao Y, Lu Y, Zhao J, Sun E.-Y, Houk KN, Shi Z. Nature 2019; 575: 336
- 16b Wang ZJ, Chen X, Wu L, Wong JJ, Liang Y, Zhao Y, Houk KN, Shi Z. Angew. Chem. Int. Ed. 2021; 60: 8500
- 16c Iqbal SA, Cid J, Procter RJ, Uzelac M, Yuan K, Ingleson MJ. Angew. Chem. Int. Ed. 2019; 58: 15381
- 16d De Vries TS, Prokofjevs A, Harvey JN, Vedejs E. J. Am. Chem. Soc. 2009; 131: 14679
- 17 Roth D, Radosevich AT, Greb L. J. Am. Chem. Soc. 2023; 145: 24184
- 18a Cowley AH, Kemp RA, Stewart CA. J. Am. Chem. Soc. 1982; 104: 3239
- 18b Jayaraman A, Sterenberg BT. Organometallics 2016; 35: 2367
- 18c Dordevic N, Ganguly R, Petkovic M, Vidovic D. Inorg. Chem. 2017; 56: 14671
- 19 Lipshultz JM, Li G, Radosevich AT. J. Am. Chem. Soc. 2021; 143: 1699
- 20 Abbenseth J, Goicoechea JM. Chem. Sci. 2020; 11: 9728
- 21a Mayer U, Gutmann V, Gerger W. Monatsh. Chem. 1975; 106: 1235
- 21b Beckett MA, Strickland GC, Holland JR, Varma KS. Polymer 1996; 37: 4629
- 21c Erdmann P, Greb L. Angew. Chem. Int. Ed. 2022; 61: e202114550