Synlett 2024; 35(08): 903-907
DOI: 10.1055/a-2268-4678
cluster
Special Issue dedicated to Keith Fagnou

Manganese(I)-Catalyzed C–H Allylation of Tryptophans and Their Oligopeptides On Water

Julia Struwe
a   Institut für Organische und Biomolekulare Chemie, Wöhler-Forschungsinstitut für Nachhaltige Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
,
Tsuyoshi Oyama
a   Institut für Organische und Biomolekulare Chemie, Wöhler-Forschungsinstitut für Nachhaltige Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
,
Fabrice Gallou
b   Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland
,
a   Institut für Organische und Biomolekulare Chemie, Wöhler-Forschungsinstitut für Nachhaltige Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
c   German Center for Cardiovascular Research (DZHK), Potsdamer Straße 58, 10785, Berlin, Germany
› Author Affiliations
Generous support from the Deutsches Zentrum für Herz-Kreislaufforschung (DZHK) (PI at the German Centre for Cardiovascular Research), the European Research Council (ERC) (Advanced Grant 101021358), and the DFG (Gottfried-Wilhelm-Leibniz Prize) to L.A. are gratefully acknowledged. We are also grateful for support from the European Union’s Horizon 2020 research and innovation program, H2020 Marie Skłodowska-Curie Actions (Grant Agreement No. 860762) to T.O., and warmly acknowledge Novartis for financial support.


Abstract

The manganese(I)-catalyzed allylation of the amino acid tryptophan is realized under exceedingly mild conditions using water as a sustainable and non-hazardous reaction medium, instead of classical organic solvents, with great potential for green and sustainable chemistry. Synthetically useful α,β-unsaturated esters can be accessed by reaction with Morita–Baylis–Hillman (MBH) adducts following a fast C–H activation approach. The robustness of this procedure is reflected by kinetic analysis at different reaction temperatures and reduced catalyst loadings are employed.

Supporting Information



Publication History

Received: 21 January 2024

Accepted after revision: 14 February 2024

Accepted Manuscript online:
14 February 2024

Article published online:
27 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Lau JL, Dunn MK. Bioorg. Med. Chem. 2018; 26: 2700
  • 2 Fosgerau K, Hoffmann T. Drug Discovery Today 2015; 20: 122
  • 3 Guillemard L, Kaplaneris N, Ackermann L, Johansson MJ. Nat. Rev. Chem. 2021; 5: 522
  • 4 Räder AF. B, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Angew. Chem. Int. Ed. 2018; 57: 14414
  • 5 Blaskovich MA. T. J. Med. Chem. 2016; 59: 10807
  • 6 Bottecchia C, Noël T. Chem. Eur. J. 2019; 25: 26
  • 7 Brandhofer T, García Mancheño O. Eur. J. Org. Chem. 2018; 6050
  • 8 Lee HG, Lautrette G, Pentelute BL, Buchwald SL. Angew. Chem. Int. Ed. 2017; 56: 3177
  • 9 Vinogradova EV, Zhang C, Spokoyny AM, Pentelute BL, Buchwald SL. Nature 2015; 526: 687
  • 10 Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1: 43
  • 11 Gensch T, James MJ, Dalton T, Glorius F. Angew. Chem. Int. Ed. 2018; 57: 2296
  • 12 Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
  • 13 Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
  • 14 Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14700
  • 15 Mendive-Tapia L, Preciado S, García J, Ramón R, Kielland N, Albericio F, Lavilla R. Nat. Commun. 2015; 6: 7160
  • 16 Ruiz-Rodríguez J, Albericio F, Lavilla R. Chem. Eur. J. 2010; 16: 1124
  • 17 Hou X, Kaplaneris N, Yuan B, Frey J, Ohyama T, Messinis AM, Ackermann L. Chem. Sci. 2022; 13: 3461
  • 18 Schischko A, Kaplaneris N, Rogge T, Sirvinskaite G, Son J, Ackermann L. Nat. Commun. 2019; 10: 3553
  • 19 Schischko A, Ren H, Kaplaneris N, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 1576
  • 20 Li B, Li X, Han B, Chen Z, Zhang X, He G, Chen G. J. Am. Chem. Soc. 2019; 141: 9401
  • 21 Zhang X, Lu G, Sun M, Mahankali M, Ma Y, Zhang M, Hua W, Hu Y, Wang Q, Chen J, He G, Qi X, Shen W, Liu P, Chen G. Nat. Chem. 2018; 10: 540
  • 22 Yin X.-S, Qi W.-Y, Shi B.-F. Chem. Sci. 2021; 12: 13137
  • 23 Zhan B.-B, Li Y, Xu J.-W, Nie X.-L, Fan J, Jin L, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 5858
  • 24 Chen G, Shigenari T, Jain P, Zhang Z, Jin Z, He J, Li S, Mapelli C, Miller MM, Poss MA, Scola PM, Yeung K.-S, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 3338
  • 25 Liu T, Qiao JX, Poss MA, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 10924
  • 26 Bai Z, Cai C, Yu Z, Wang H. Angew. Chem. Int. Ed. 2018; 57: 13912
  • 27 Tran LD, Daugulis O. Angew. Chem. Int. Ed. 2012; 51: 5188
  • 28 Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
  • 29 Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 30 Hu Y, Zhou B, Wang C. Acc. Chem. Res. 2018; 51: 816
  • 31 Ruan Z, Sauermann N, Manoni E, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 3172
  • 32 Jei BB, Yang L, Ackermann L. Chem. Eur. J. 2022; 28: e202200811
  • 33 Kaplaneris N, Kaltenhäuser F, Sirvinskaite G, Fan S, De Oliveira T, Conradi L.-C, Ackermann L. Sci. Adv. 2021; 7: eabe6202
  • 34 Kaplaneris N, Son J, Mendive-Tapia L, Kopp A, Barth ND, Maksso I, Vendrell M, Ackermann L. Nat. Commun. 2021; 12: 3389
  • 35 Luo Z, Whitcomb CA, Kaylor N, Zhang Y, Zhang S, Davis RJ, Gunnoe TB. ChemCatChem 2021; 13: 260
  • 36 Zhu W, Luo Z, Chen J, Liu C, Yang L, Dickie DA, Liu N, Zhang S, Davis RJ, Gunnoe TB. ACS Catal. 2019; 9: 7457
  • 37 Kaplaneris N, Rogge T, Yin R, Wang H, Sirvinskaite G, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 3476
  • 38 Wang W, Subramanian P, Martinazzoli O, Wu J, Ackermann L. Chem. Eur. J. 2019; 25: 10585
  • 39 Prat D, Hayler J, Wells A. Green Chem. 2014; 16: 4546
  • 40 Henderson RK, Jiménez-González C, Constable DJ. C, Alston SR, Inglis GG. A, Fisher G, Sherwood J, Binks SP, Curzons AD. Green Chem. 2011; 13: 854
  • 41 Cortes-Clerget M, Yu J, Kincaid JR. A, Walde P, Gallou F, Lipshutz BH. Chem. Sci. 2021; 12: 4237
  • 42 Hauk P, Wencel-Delord J, Ackermann L, Walde P, Gallou F. Curr. Opin. Colloid Interface Sci. 2021; 56: 101506
  • 43 Gallou F. Chimia 2020; 74: 538
  • 44 Steven A. Synthesis 2019; 51: 2632
  • 45 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
  • 46 Anastas PT, Kirchhoff MM. Acc. Chem. Res. 2002; 35: 686
  • 47 Lipshutz BH, Ghorai S. Aldrichimica Acta 2012; 45: 3
  • 48 Lipshutz BH, Ghorai S, Abela AR, Moser R, Nishikata T, Duplais C, Krasovskiy A, Gaston RD, Gadwood RC. J. Org. Chem. 2011; 76: 4379
  • 49 Cortes-Clerget M, Lee NR, Lipshutz BH. Nat. Protoc. 2019; 14: 1108
  • 50 Borrego E, Caballero A, Pérez PJ. Organometallics 2022; 41: 3084
  • 51 Sarathkumar S, Kavala V, Yao C.-F. Org. Lett. 2021; 23: 1960
  • 52 Peng W, Liu Q, Yin F, Shi C, Ji L, Qu L, Wang C, Luo H, Kong L, Wang X. RSC Adv. 2021; 11: 8356
  • 53 Mandal A, Garai B, Dana S, Bera R, Baidya M. Chem. Asian J. 2020; 15: 4009
  • 54 Nie R, Lai R, Lv S, Xu Y, Guo L, Wang Q, Wu Y. Chem. Commun. 2019; 55: 11418
  • 55 Chen X, Cui X, Bai L, Wang Y, Xie Y, Wang S, Zhai R, Zhao K, Kong D, Li Y. Asian J. Org. Chem. 2019; 8: 2209
  • 56 Drev M, Grošelj U, Ledinek B, Perdih F, Svete J, Štefane B, Požgan F. Org. Lett. 2018; 20: 5268
  • 57 Wu S, Wu X, Fu C, Ma S. Org. Lett. 2018; 20: 2831
  • 58 Ali MA, Yao X, Sun H, Lu H. Org. Lett. 2015; 17: 1513
  • 59 Ackermann L, Pospech J. Org. Lett. 2011; 13: 4153
  • 60 Ackermann L. Org. Lett. 2005; 7: 3123
  • 61 Dhawa U, Kaplaneris N, Ackermann L. Org. Chem. Front. 2021; 8: 4886
  • 62 Kaplaneris N, Vilches-Herrera M, Wu J, Ackermann L. ACS Sustainable Chem. Eng. 2022; 10: 6871
  • 63 Wei D, Lin G.-Q. Chin. J. Chem. 2024; 42: 533
  • 64 Ackermann L. Acc. Chem. Res. 2020; 53: 84
  • 65 Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
  • 66 Krell C, Schreiber R, Hueber L, Sciascera L, Zheng X, Clarke A, Haenggi R, Parmentier M, Baguia H, Rodde S, Gallou F. Org. Process Res. Dev. 2021; 25: 900
  • 67 Butyl ((S)-2-((3-(2-((tert-Butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)-1-(pyridin-2-yl)-1H-indol-2-yl)methyl)acrylate) (3a); Typical Procedure Tryptophan 1 (63.4 mg, 0.20 mmol, 1.00 equiv), MnBr(CO)5 (5.5 mg, 20 μmol, 10 mol%) and NaOAc (4.9 mg, 60 μmol, 30 mol%) were placed in a 10 mL vial. The vial was then evacuated and filled with N2 three times. Afterwards, the MBH adduct 2a (103 mg, 0.40 mmol, 2.00 equiv) and freshly degassed H2O (1.5 mL) were added and the suspension was stirred at 80 °C for 16 h under N2. After cooling to ambient temperature, EtOAc (10 mL) was added, the organic phase was separated, and the aqueous phase was extracted with EtOAc (3 × 10 mL). After drying of the combined organic phases over Na2SO4, the crude mixture was concentrated in vacuo. Purification by column chromatography (SiO2, n-hexane/EtOAc = 4:1) afforded the desired product 3a (91.1 mg, 85%) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 8.57 (d, J = 4.6 Hz, 1 H), 7.82 (dt, J = 7.8, 1.5 Hz, 1 H), 7.57 (dd, J = 3.9, 3.9 Hz, 1 H), 7.38–7.22 (m, 3 H), 7.19–7.09 (m, 2 H), 5.97 (d, J = 2.0 Hz, 1 H), 5.18 (d, J = 8.1 Hz, 1 H), 5.02 (d, J = 2.2 Hz, 1 H), 4.65 (q, J = 6.6 Hz, 1 H), 4.07 (td, J = 6.7, 1.3 Hz, 2 H), 3.96 (s, 2 H), 3.66 (d, J = 1.3 Hz, 3 H), 3.30 (d, J = 5.1 Hz, 2 H), 1.58 (q, J = 6.9 Hz, 2 H), 1.40 (s, 9 H), 1.35–1.27 (m, 2 H), 0.90 (t, J = 7.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 172.9 (Cq), 166.5 (Cq), 155.3 (Cq), 151.4 (Cq), 149.6 (CH), 138.4 (CH), 137.8 (Cq), 136.9 (Cq), 134.6 (Cq), 128.7 (Cq), 126.0 (Cq), 122.6 (CH), 122.2 (CH), 121.0 (CH), 120.8 (CH), 118.8 (CH), 110.7 (CH2), 110.3 (CH), 79.8 (Cq), 64.8 (CH2), 62.6 (CH2), 54.1 (CH), 52.4 (CH3), 30.7 (CH2), 28.4 (CH3), 27.0 (CH2), 19.2 (CH2), 13.8 (CH3). HRMS (ESI): m/z [M + Na]+ calcd for C30H37N3O6Na: 558.2575; found: 558.2575.
  • 68 Brals J, Smith JD, Ibrahim F, Gallou F, Handa S. ACS Catal. 2017; 7: 7245