Int J Sports Med
DOI: 10.1055/a-2253-1807
Clinical Sciences

Determinants of V̇+O2peak Changes After Aerobic Training in Coronary Heart Disease Patients

Axel Girault
1   Preventive medicine and physical activity Center (ÉPIC), Montreal Heart Institute, Université de Montréal, Montréal, Canada
2   Unit Research Physiological Adaptations to Exercise and Physical Rehabilitation, Université de Picardie Jules Verne, Amiens, France
,
Pierre-Marie Leprêtre
2   Unit Research Physiological Adaptations to Exercise and Physical Rehabilitation, Université de Picardie Jules Verne, Amiens, France
6   Unit of Cardiac Rehabilitation, Hospital Center of Corbie, Corbie, France
,
Lukas-Daniel Trachsel
3   University Clinic for Cardiology, Inselspital University Hospital Bern, Bern, Switzerland
,
Florent Besnier
1   Preventive medicine and physical activity Center (ÉPIC), Montreal Heart Institute, Université de Montréal, Montréal, Canada
5   Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
,
Maxime Boidin
4   Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom of Great Britain and Northern Ireland
,
Julie Lalongé
1   Preventive medicine and physical activity Center (ÉPIC), Montreal Heart Institute, Université de Montréal, Montréal, Canada
,
Martin Juneau
1   Preventive medicine and physical activity Center (ÉPIC), Montreal Heart Institute, Université de Montréal, Montréal, Canada
5   Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
,
Louis Bherer
1   Preventive medicine and physical activity Center (ÉPIC), Montreal Heart Institute, Université de Montréal, Montréal, Canada
5   Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
,
Anil Nigam
1   Preventive medicine and physical activity Center (ÉPIC), Montreal Heart Institute, Université de Montréal, Montréal, Canada
5   Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
,
Mathieu Gayda
1   Preventive medicine and physical activity Center (ÉPIC), Montreal Heart Institute, Université de Montréal, Montréal, Canada
5   Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
› Author Affiliations
Funding Information Mirella and Lino Saputo Research Chair in Cardiovascular Diseases and the Prevention of Cognitive Decline from Université de Montréal at the Montreal Heart Institute — the Montreal Heart Institute Foundation — the Fonds de Recherche du Québec en Santé — the ÉPIC Center Foundation —

Abstract

This study aimed to highlight the ventilatory and circulatory determinants of changes in ˙VO2peak after exercise-based cardiac rehabilitation (ECR) in patients with coronary heart disease (CHD). Eighty-two CHD patients performed, before and after a 3-month ECR, a cardiopulmonary exercise testing (CPET) on a bike with gas exchanges measurements (˙VO2peak, minute ventilation, i. e., ˙VE), and cardiac output (Q˙c). The arteriovenous difference in O2 (C(a-v¯)O2) and the alveolar capillary gradient in O2 (PAi-aO2) were calculated using Fick’s laws. Oxygen uptake efficiency slope (OUES) was calculated. A 5.0% cut off was applied for differentiating non- (NR: ˙VO2<0.0%), low (LR: 0.0≤ ∆˙VO2<5.0%), moderate (MR: 5.0≤∆˙VO2 < 10.0%), and high responders (HR: ∆˙VO2≥10.0%) to ECR. A total of 44% of patients were HR (n=36), 20% MR (n=16), 23% LR (n=19), and 13% NR (n=11). For HR, the ˙VO2peak increase (p<0.01) was associated with increases in ˙VE (+12.8±13.0 L/min, p<0.01), (+1.0±0.9 L/min, p<0.01), and C(a-v¯)O2 (+2.3±2.5 mLO2/100 mL, p<0.01). MR patients were characterized by+6.7±19.7 L/min increase in ˙VE (p=0.04) and+0.7±1.0 L/min of Q˙c (p<0.01). ECR induced decreases in ˙VE (p=0.04) and C(a-v¯)O2 (p<0.01) and a Q˙c increase in LR and NR patients (p<0.01). Peripheral and ventilatory responses more than central adaptations could be responsible for the ˙VO2peak change with ECR in CHD patients.

Supplementary Material



Publication History

Received: 26 September 2023

Accepted: 23 January 2024

Accepted Manuscript online:
24 January 2024

Article published online:
11 March 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Anderson L, Oldridge N, Thompson DR. et al. Exercise-based cardiac rehabilitation for coronary heart disease: Cochrane systematic review and meta-analysis. J Am Coll Cardiol 2016; 67: 1-12 DOI: 10.1016/j.jacc.2015.10.044.
  • 2 Kodama S, Saito K, Tanaka S. et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 2009; 301: 2024-2035 DOI: 10.1001/jama.2009.681.
  • 3 Mikkelsen N, Cadarso-Suárez C, Lado-Baleato O. et al. Improvement in VO(2peak) predicts readmissions for cardiovascular disease and mortality in patients undergoing cardiac rehabilitation. Eur J Prev Cardiol 2020; 27: 811-819 DOI: 10.1177/2047487319887835.
  • 4 Trachsel LD, Boidin M, Henri C. et al. Women and men with coronary heart disease respond similarly to different aerobic exercise training modalities: a pooled analysis of prospective randomized trials. Appl Physiol Nutr Metab 2021; 46: 417-425 DOI: 10.1139/apnm-2020-0650.
  • 5 De Schutter A, Kachur S, Lavie CJ. et al. Cardiac rehabilitation fitness changes and subsequent survival. Eur Heart J Qual Care Clin Outcomes 2018; 4: 173-179 DOI: 10.1093/ehjqcco/qcy018.
  • 6 Weatherwax RM, Harris NK, Kilding AE. et al. Incidence of V˙O2max responders to personalized versus standardized exercise prescription. Med Sci Sports Exerc 2019; 51: 681-691 DOI: 10.1249/mss.0000000000001842.
  • 7 Legendre A, Moatemri F, Kovalska O. et al. Responses to exercise training in patients with heart failure. Analysis by oxygen transport steps. Int J Cardiol 2021; 330: 120-127 DOI: 10.1016/j.ijcard.2021.02.004.
  • 8 Shen Y, Zhang X, Ma W. et al. VE/VCO(2) slope and its prognostic value in patients with chronic heart failure. Exp Ther Med 2015; 9: 1407-1412 DOI: 10.3892/etm.2015.2267.
  • 9 Wilson JR, Groves J, Rayos G. Circulatory status and response to cardiac rehabilitation in patients with heart failure. Circulation 1996; 94: 1567-1572 DOI: 10.1161/01.cir.94.7.1567.
  • 10 Van de Veire NR, Van Laethem C, Philippé J. et al. VE/VCO2 slope and oxygen uptake efficiency slope in patients with coronary artery disease and intermediate peakVO2. Eur J Cardiovasc Prev Rehabil 2006; 13: 916-923 DOI: 10.1097/01.hjr.0000238400.35094.72.
  • 11 Coeckelberghs E, Buys R, Goetschalckx K. et al. Prognostic value of the oxygen uptake efficiency slope and other exercise variables in patients with coronary artery disease. Eur J Prev Cardiol 2016; 23: 237-244 DOI: 10.1177/2047487315569410.
  • 12 Péronnet F, Aguilaniu B. [Pulmonary and alveolar ventilation, gas exchanges and arterial blood gases during ramp exercise]. Rev Mal Respir 2012; 29: 1017-1034 DOI: 10.1016/j.rmr.2012.09.005.
  • 13 Piepoli MF, Corrà U, Agostoni PG. et al. Statement on cardiopulmonary exercise testing in chronic heart failure due to left ventricular dysfunction: recommendations for performance and interpretation. Part I: definition of cardiopulmonary exercise testing parameters for appropriate use in chronic heart failure. Eur J Cardiovasc Prev Rehabil 2006; 13: 150-164 DOI: 10.1097/01.hjr.0000209812.05573.04.
  • 14 Trachsel LD, Nigam A, Fortier A. et al. Moderate-intensity continuous exercise is superior to high-intensity interval training in the proportion of VO(2peak) responders after ACS. Rev Esp Cardiol (Engl Ed) 2020; 73: 725-733 DOI: 10.1016/j.rec.2019.09.013.
  • 15 Witvrouwen I, Pattyn N, Gevaert AB. et al. Predictors of response to exercise training in patients with coronary artery disease – a subanalysis of the SAINTEX-CAD study. Eur J Prev Cardiol 2019; 26: 1158-1163 DOI: 10.1177/2047487319828478.
  • 16 Trachsel LD, David LP, Gayda M. et al. The impact of high-intensity interval training on ventricular remodeling in patients with a recent acute myocardial infarction – A randomized training intervention pilot study. Clin Cardiol 2019; 42: 1222-1231 DOI: 10.1002/clc.23277.
  • 17 Gayda M, Gremeaux V, Bherer L. et al. Cognitive function in patients with stable coronary heart disease: Related cerebrovascular and cardiovascular responses. PLoS One 2017; 12: e0183791 DOI: 10.1371/journal.pone.0183791.
  • 18 Wagner PD. Influence of mixed venous PO2 on diffusion of O2 across the pulmonary blood:gas barrier. Clin Physiol 1982; 2: 105-115 DOI: 10.1111/j.1475-097x.1982.tb00013.x.
  • 19 Fincke R, Hochman JS, Lowe AM. et al. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol 2004; 44: 340-348 DOI: 10.1016/j.jacc.2004.03.060.
  • 20 Busso T, Carasso C, Lacour JR. Adequacy of a systems structure in the modeling of training effects on performance. J Appl Physiol (1985) 1991; 71: 2044-2049 DOI: 10.1152/jappl.1991.71.5.2044.
  • 21 Cook CE. Clinimetrics Corner: the Minimal Clinically Important Change Score (MCID): A necessary pretense. J Man Manip Ther 2008; 16: E82-E83 DOI: 10.1179/jmt.2008.16.4.82E.
  • 22 Ehsani AA. Mechanisms responsible for enhanced stroke volume after exercise training in coronary heart disease. Eur Heart J 1987; 8: 9-14 DOI: 10.1093/eurheartj/8.suppl_g.9.
  • 23 Smarz K, Jaxa-Chamiec T, Zaborska B. et al. Mechanisms of exercise capacity improvement after cardiac rehabilitation following myocardial infarction assessed with combined stress echocardiography and cardiopulmonary exercise testing. J Clin Med 2021; 10: 4083 DOI: 10.3390/jcm10184083.
  • 24 Keteyian SJ, Brawner CA, Ehrman JK. et al. Reproducibility of peak oxygen uptake and other cardiopulmonary exercise parameters: implications for clinical trials and clinical practice. Chest 2010; 138: 950-955 DOI: 10.1378/chest.09-2624.
  • 25 Rocco EA, Prado DM, Silva AG. et al. Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease. Clinics (Sao Paulo) 2012; 67: 623-628 DOI: 10.6061/clinics/2012(06)13.
  • 26 Taguchi T, Adachi H, Hoshizaki H. et al. Effect of physical training on ventilatory patterns during exercise in patients with heart disease. J Cardiol 2015; 65: 343-348 DOI: 10.1016/j.jjcc.2014.06.004.
  • 27 Baba R, Nagashima M, Goto M. et al. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J Am Coll Cardiol 1996; 28: 1567-1572 DOI: 10.1016/s0735-1097(96)00412-3.
  • 28 Arena R, Myers J, Harber M. et al. The V˙E/V˙co2 slope during maximal treadmill cardiopulmonary exercise testing: Reference standards from FRIEND (Fitness Registry and the Importance Of Exercise: A national database). J Cardiopulm Rehabil Prev 2021; 41: 194-198 DOI: 10.1097/hcr.0000000000000566.
  • 29 Banning AP, Lewis NP, Northridge DB. et al. Perfusion/ventilation mismatch during exercise in chronic heart failure: an investigation of circulatory determinants. Br Heart J 1995; 74: 27-33 DOI: 10.1136/hrt.74.1.27.
  • 30 Itoh M, Fukuoka Y, Grassi B. et al. VE response to VCO2 during exercise is unaffected by exercise training and different exercise limbs. Jpn J Physiol 2002; 52: 489-496 DOI: 10.2170/jjphysiol.52.489.
  • 31 Le Huu Thien B, Huynh Quang D. Equation des gaz alvéolaires et différence alvéoloartérielle en oxygen. J Func Vent Pulm 2014; 5: 1-48
  • 32 Wagner PD. Ventilation-perfusion matching during exercise. Chest 1992; 101: 192s-198s DOI: 10.1378/chest.101.5_supplement.192s.
  • 33 West JB, Liu MA, Stark PC. et al. Measuring the efficiency of pulmonary gas exchange using expired gas instead of arterial blood: comparing the “ideal” Po2 of Riley with end-tidal Po2 . Am J Physiol Lung Cell Mol Physiol 2020; 319: L289-l293 DOI: 10.1152/ajplung.00150.2020.
  • 34 Clark AL, Volterrani M, Swan JW. et al. Ventilation-perfusion matching in chronic heart failure. Int J Cardiol 1995; 48: 259-270 DOI: 10.1016/0167-5273(94)02267-m.
  • 35 Lewis NP, Banning AP, Cooper JP. et al. Impaired matching of perfusion and ventilation in heart failure detected by 133xenon. Basic Res Cardiol 1996; 91: 45-49 DOI: 10.1007/bf00810523.
  • 36 Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 1993; 148: 867-871 DOI: 10.1164/ajrccm/148.4_Pt_1.867.
  • 37 Myers J, Wong M, Adhikarla C. et al. Cardiopulmonary and noninvasive hemodynamic responses to exercise predict outcomes in heart failure. J Card Fail 2013; 19: 101-107 DOI: 10.1016/j.cardfail.2012.11.010.
  • 38 Pugliese NR, Fabiani I, Mandoli GE. et al. Echo-derived peak cardiac power output-to-left ventricular mass with cardiopulmonary exercise testing predicts outcome in patients with heart failure and depressed systolic function. Eur Heart J Cardiovasc Imaging 2019; 20: 700-708 DOI: 10.1093/ehjci/jey172.
  • 39 Li J, Li Y, Gong F. et al. Effect of cardiac rehabilitation training on patients with coronary heart disease: a systematic review and meta-analysis. Ann Palliat Med 2021; 10: 11901-11909 DOI: 10.21037/apm-21-3136.
  • 40 Sadeghi M, Garakyaraghi M, Khosravi M. et al. The impacts of cardiac rehabilitation program on echocardiographic parameters in coronary artery disease patients with left ventricular dysfunction. Cardiol Res Pract 2013; 2013: 201713 DOI: 10.1155/2013/201713.
  • 41 Peretti A, Maloberti A, Garatti L. et al. Functional Improvement after outpatient cardiac rehabilitation in acute coronary syndrome patients is not related to improvement in left ventricular ejection fraction. High Blood Press Cardiovasc Prev 2020; 27: 225-230 DOI: 10.1007/s40292-020-00374-1.
  • 42 Haddadzadeh MH, Maiya AG, Padmakumar R. et al. Effect of exercise-based cardiac rehabilitation on ejection fraction in coronary artery disease patients: a randomized controlled trial. Heart Views 2011; 12: 51-57 DOI: 10.4103/1995-705x.86013.
  • 43 Mendoza DD, Cooper HA, Panza JA. Cardiac power output predicts mortality across a broad spectrum of patients with acute cardiac disease. Am Heart J 2007; 153: 366-370 DOI: 10.1016/j.ahj.2006.11.014.
  • 44 Guazzi M, Adams V, Conraads V. et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2012; 126: 2261-2274 DOI: 10.1161/CIR.0b013e31826fb946.
  • 45 Takagi S, Murase N, Kime R. et al. Aerobic training enhances muscle deoxygenation in early post-myocardial infarction. Eur J Appl Physiol 2016; 116: 673-685 DOI: 10.1007/s00421-016-3326-x.
  • 46 Kemps HM, Thijssen EJ, Schep G. et al. Evaluation of two methods for continuous cardiac output assessment during exercise in chronic heart failure patients. J Appl Physiol (1985) 2008; 105: 1822-1829 DOI: 10.1152/japplphysiol.90430.2008.