RSS-Feed abonnieren
DOI: 10.1055/a-2246-0792
Prävention postoperativer Wundinfektionen nach Korrektur neuromuskulärer Skoliosen
Anwendung eines epikutanen VakuumverbandesPrevention of Postoperative Wound-infection after Correction of Neuromuscular ScoliosisUse of Epicutaneous Vacuum-dressingZusammenfassung
Ziel der Studie Identifikation von Faktoren, welche postoperative Wundinfektionen bei operativ therapierten neuromuskulären Skoliosen (NMS) beeinflussen und wie diesen präventiv zu begegnen ist.
Material und Methoden Erhoben wurden Daten von 2016–2020 von Patienten mit einer dorsal einzeitig korrigierten NMS mit einem Mindestnachbetrachtungszeitraum von 12 Monaten. Ab Herbst 2018 erfolgte die Verwendung eines perioperativ applizierten epikutanen Vakuumverbands (EV) für 5 Tage. Die postoperative Infektionsrate und das verursachende Keimspektrum wurden analysiert.
Ergebnisse 83 Patienten (m : f 39 : 44) wurden eingeschlossen. Gruppe 1 (ohne EV) umfasste 48 Patienten, Gruppe 2 (mit EV) 35. Das durchschnittliche Alter bei OP betrug 16,6 ± 4,94 Jahre. 60 Patienten waren inkontinent, 58 nicht geh- und stehfähig. Der präoperative Cobb-Winkel der Hauptkrümmung belief sich auf 87,7 ± 18,4°, die pelvic obliquity auf 18,4 ± 12,25°. Die fusionierte Strecke umfasste 14,59 ± 1,65 Wirbelkörper, bei einer durchschnittlichen OP-Dauer von 221 ± 49 min. Die OP-Dauer in Gruppe 2 war geringgradig kürzer (229,92 vs. 216,93 min, p=0,1) ohne einen Unterschied bzgl. der fusionierten Strecke (14,63 vs. 14,48 Wirbel, p=0,35). Patienten, bei denen eine Wundinfektion auftrat, hatten eine nicht-signifikant längere Instrumentationsstrecke (15,16 Wirbel, p=0,1) und längere OP-Dauer (246,2 min, p=0,19). Gruppe 1 wies 7 Infektionen auf (14,5%), davon 4 verursacht durch Fäkal-Keime, 3 durch Hautkeime. In Gruppe 2 trat keine Infektion auf (p<0,05). Patienten mit einer Infektion wurden 3-mal ± 1,2-mal revidiert. Die Dauer der postoperativ notwendigen intensivmedizinischen Behandlung stieg bei Infektion von 80,6 ± 132,7 auf 457,6 ± 315,8 h (p<0,05), der stationäre Aufenthalt verlängerte sich von 14,31 ± 5,65 d auf 34,3 ± 21,6 d (p<0,05). Es wurde eine antiinfektive Therapie über 56,1 ± 28,58 d verabreicht (16,3 ± 8,7 d i.v., 39,8 ± 24,4 d p.o.).
Schlussfolgerung Die Verwendung eines epikuanten Vakuumverbandes für 5 Tage nach operativer Korrektur einer NMS reduziert die Rate von Wundinfektionen signifikant.
Abstract
Objective Identification of determining factors on postoperative wound infection and validating preventive measures as clinical guidelines in the surgical treatment of neuromuscular scoliosis (NMS).
Methods Data was collected from patients with instrumented correction and fusion in NMS between 2016 and 2020. Minimum follow-up was 12 months. From autumn 2018 on postoperatively an epicutaneous vacuum-dressing (EV) was applied for 5 days. Rates of postoperative infection and the causing type of bacteria were analyzed in all patients with NMS treated surgically during the period of 24 months before and after implementation of this dressing technique.
Results 83 patients (m : f 39 : 44) met the inclusion criteria. Group 1 (without EV) included 48 patients, group 2 (with EV) 35. Average age at surgery was 16,6 ± 4,94 years. 60 patients were incontinent, 58 were non-ambulatory. GMFCS-Score was 4,18 + 1,2. Average preoperative Cobb-angle of the main curve measured 87,7 ± 18,4°, pelvic obliquity 18,4 ± 12,25°. Length of fusion averaged 14,59 ± 1,65 vertebrae, average OR time 221 ± 49 min. Patients with a postoperative wound infection had slightly more vertebrae included (15,16 vertebrae, p=0,1) and a longer duration of surgery (246,2 min, p=0,19). There were 7 infections in group 1 (14,5%), 4 caused by fecal bacteria, 3 by bacteria usually found on the skin. Group 2 had no infections (p<0,05). Patients with infection underwent 3 ± 1,2 revisions, 2 patients had cardiopulmonary resuscitation. The postoperative stay on ICU rises from 80,6 ± 132,7 to 457,6 ± 315,8 h (p<0,05), the hospitalization from 14,31 ± 5,65 d to 34,3 ± 21,6 d (p<0,05) in the infection group. Antibiotics were applied 56,1 ± 28,58 d (16,3 ± 8,7 d i.v., 39,8 ± 24,4 d p.o.).
Conclusion The application of an epicutaneous vacuum-dressing for 5 days post-surgery significantly reduces rates of infections and its complications among patients with NMS.
Publikationsverlauf
Artikel online veröffentlicht:
13. August 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Forst R, Forst J, Heller K D. et al. Characteristics in the treatment of scoliosis inmuscular diseases. Z Orthop Ihre Grenzgeb 1997; 135: 95-105
- 2 Master DL, Poe-Kochert C, Son-Hing J. et al. Wound infections after surgery for neuromuscular scoliosis: risk factors and treatment outcomes. Spine (Phila Pa 1976) 2011; 36: E179-E185 DOI: 10.1097/BRS.0b013e3181db7afe. (PMID: 21248588)
- 3 Modi HN, Hong JY, Mehta SS. et al. Surgical correction and fusion using posterior-only pedicle screw construct for neuropathic scoliosis in patients with cerebral palsy: a three-year follow-up study. Spine (Phila Pa 1976) 2009; 34: 1167-1175
- 4 Atkins BZ, Wooten MK, Kistler J. et al. Does negative pressure wound therapy have a role in preventing poststernotomy wound complications?. Surg Innov 2009; 16: 140-146 DOI: 10.1177/1553350609334821. (PMID: 19460818)
- 5 Brunner R, Gebhard F. Neurogenic spinal deformities. I.Conservative and surgical treatment of spinal deformities. Orthopade 2002; 31: 51-57 DOI: 10.1007/s132-002-8274-5. (PMID: 11963469)
- 6 López-Cano M, Armengol-Carrasco M. Use of vacuum-assisted closure in open incisional hernia repair: a novel approach to prevent seroma formation. Hernia 2013; 17: 129-131 DOI: 10.1007/s10029-011-0837-6. (PMID: 21667262)
- 7 Condé-Green A, Chung TL, Holton LH. et al. Incisional negative-pressure wound therapy versus conventional dressings following abdominal wall reconstruction: a comparative study. Ann Plastic Surg 2012; 71: 394-397 DOI: 10.1097/SAP.0b013e31824c9073. (PMID: 22868327)
- 8 Lemans JVC, Wijdicks SPJ, Boot W. et al. Intrawound Treatment for Prevention of Surgical Site Infections in Instrumented Spinal Surgery: A Systematic Comparative Effectiveness Review and Meta-Analysis. Global Spine Journal 2019; 9: 219-230 DOI: 10.1177/2192568218786252. (PMID: 30984503)
- 9 Lonstein JE, Koop SE, Novachek TF. et al. Results and complications following spinal fusion for neuromuscular scoliosis in cerebral palsy and static encephalopathy using Luque– Galveston instrumentation: experience in 93 patients. Spine (Phila Pa 1976) 2012; 37: 583-591
- 10 Putzier M, Groß C, Zahn RK. et al. Besonderheiten neuromuskulärer Skoliosen [Characteristics of neuromuscular scoliosis]. Orthopade 2016; 45: 500-508 DOI: 10.1007/s00132-016-3272-7. (PMID: 27197823)
- 11 Evaniew N, Khan M, Drew B. et al. Intrawound vancomycin to prevent infections after spine surgery: a systematic review and meta-analysis. Eur Spine J 2015; 24: 533-42 DOI: 10.1007/s00586-014-3357-0. (PMID: 24838506)
- 12 Hell AK, Tsaknakis K, Lippross S. et al. Skoliose im Kindes- und Jugendalter. Monatsschr Kinderheilkd 2020; 168: 917-929 DOI: 10.1007/s00112-020-00977-x.
- 13 Norman G, Goh EL, Dumville JC. et al. Negative pressure wound therapy for surgical wounds healing by primary closure. Cochrane Database Syst Rev 2020; 5: CD009261 DOI: 10.1002/14651858.CD009261.pub5.. (PMID: 35471497)
- 14 Master DL, Son-Hing JP, Poe-Kochert C. et al. Risk factors for major complications after surgery for neuromuscular scoliosis. Spine 2011; 36: 564-571 DOI: 10.1097/BRS.0b013e3181e193e9. (PMID: 20683386)
- 15 Yaszay B, Bartley CE, Sponseller PD. et al. Major complications following surgical correction of spine deformity in 257 patients with cerebral palsy. Spine Deform 2020; 8: 1305-1312 DOI: 10.1007/s43390-020-00165-7. (PMID: 32720268)
- 16 Mullender M, Blom N, De Kleuver M. et al. A Dutch guideline for the treatment of scoliosis in neuromuscular disorders. Scoliosis 2008; 3: 14 DOI: 10.1186/1748-7161-3-14.. (PMID: 18822133)
- 17 O'Neill KR, Smith JG, Abtahi AM. et al. Reduced surgical site infections in patients undergoing posterior spinal stabilization of traumatic injuries using vancomycin powder. Spine J 2011; 11: 641-646 DOI: 10.1016/j.spinee.2011.04.025. . (PMID: 21600853)
- 18 Canavese F, Rousset M, Le Gledic B. et al. Surgical advances in the treatment of neuromuscular scoliosis. World J Orthop 2014; 5: 124-133 DOI: 10.5312/wjo.v5.i2.124. (PMID: 24829875)
- 19 Hasler CC. Operative treatment for spinal deformities in cerebral palsy. J Child Orthop 2013; 7: 419-423 DOI: 10.1007/s11832-013-0517-4. (PMID: 24432105)
- 20 Miller A, Temple T, Miller F. Impact of orthoses on the rate of scoliosis progression in children with cerebral palsy. J Pediatr Orthop 1996; 16: 332-335 DOI: 10.1097/012. (PMID: 8728632)
- 21 Reames DL, Smith JS, Fu KM. et al. Complications in the surgical treatment of 19,360 cases of paediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality Database. Spine (Phila Pa 1976) 2011; 36: 1484-1491
- 22 Sponseller PD, Zimmerman RM, Ko PS. et al. Low profile pelvic fixation with the sacral alar iliac technique in the paediatric population improves results at two-year minimum follow-up. Spine (Phila Pa 1976) 2010; 35: 1887-1892
- 23 Tsirikos AI, Lipton G, Chang WN. et al. Surgical correction of scoliosis in pediatric patients with cerebral palsy using the unitrod instrumentation. Spine (Phila Pa 1976) 2008; 33: 1133-1140
- 24 Webster J, Liu Z, Norman G. et al. Negative pressure wound therapy for surgical wounds healing by primary closure. Cochrane Database Syst Rev 2019; 3: CD009261 DOI: 10.1002/14651858.CD009261.pub4. (PMID: 30912582)