Subscribe to RSS
DOI: 10.1055/a-2242-7074
Development, evaluation, and overview of standardized training phantoms for abdominal ultrasound-guided interventions
Entwicklung und Evaluation von Trainingsphantomen für ultraschallgeführte Interventionen im Abdomen Supported by: SonoNetz Leipzig e.V. Unrestricted research grant from SonoNetz LeipzigAbstract
Purpose Ultrasound (US) represents the primary approach for abdominal diagnosis and is regularly used to guide diagnostic and therapeutic interventions (INVUS). Due to possible serious INVUS complications, structured training concepts are required. Phantoms can facilitate teaching, but their use is currently restricted by complex manufacturing and short durability of the materials. Hence, the aim of this study was the development and evaluation of an optimized abdominal INVUS phantom.
Materials and Methods Phantom requirements were defined in a structured research process: Skin-like surface texture, homogeneous matrix with realistic tissue properties, implementation of lesions and abscess cavities in different sizes and depths as well as a modular production process allowing for customized layouts. The phantom prototypes were evaluated in certified ultrasound courses.
Results In accordance with the defined specifications, a new type of matrix was developed and cast in multiple layers including different target materials. The phantom structure is based on features of liver anatomy and includes solid focal lesions, vessels, and abscess formations. For a realistic biopsy procedure, ultrasound-proof material was additionally included to imitate bone. The evaluation was performed by US novices (n=40) and experienced participants (n=41). The majority (73/81) confirmed realistic visualization of the lesions. The 3D impression was rated as “very good” in 64% of cases (52/81) and good in 31% (25/81). Overall, 86% (70/81) of the participants certified high clinical relevance of the phantom.
Conclusion The presented INVUS phantom concept allows standardized and realistic training for interventions.
Zusammenfassung
Ziel Der Ultraschall (US) hat einen hohen Stellenwert in der Viszeralmedizin und wird häufig als primäre Bildgebung und zur Steuerung interventioneller Eingriffe (INVUS) eingesetzt. Aufgrund potenziell schwerwiegender Komplikationen ist ein strukturiertes INVUS-Training mit möglichst realitätsnahen Interventionsphantomen sinnvoll. Bisher ist deren Einsatz durch eine komplexe Herstellung und begrenzte Haltbarkeit limitiert. Ziel war daher die Entwicklung und Evaluation eines neuartigen abdominalen INVUS-Phantoms.
Material und Methodik Die folgenden Anforderungen an das Phantom wurden im Vorfeld definiert: Hautähnliche Oberflächentextur, homogene Matrix mit realistischen Gewebeeigenschaften, Implementierung von Läsionen und Abszesshöhlen sowie ein modularer Herstellungsprozess. Die Phantome wurden in verschiedenen Ultraschallkursen evaluiert.
Ergebnis Gemäß den Anforderungen wurde eine neuartige Matrix entwickelt und in mehreren Lagen gegossen. Die Phantomstruktur umfasst fokale Läsionen, Gefäße und Abszessformationen. Für einen möglichst realistischen Interventionsablauf wurde zusätzlich ultraschalldichtes Material als Imitierung von Rippen eingegossen. Die Bewertung wurde von im INVUS ungeübten (n=40) und erfahrenen Ultraschallern (n=41) durchgeführt. Die Mehrheit der Teilnehmer (73/81) bestätigte eine realistische Visualisierung der Läsionen. Der 3D-Eindruck wurde von 64% (52/81) der Teilnehmer als „sehr gut“ und von 31% (25/81) als „gut“ bewertet. Insgesamt bescheinigten 86% (70/81) der Teilnehmer dem Phantom eine hohe klinische Relevanz.
Schlussfolgerung Das vorgestellte INVUS-Phantom ermöglicht ein standardisiertes und realistisches Training von ultraschallgestützten Eingriffen.
Keywords
ultrasound training - free hand puncture - ultrasound-guided interventions - ultrasound-guided biopsy - ultrasound phantomPublication History
Received: 03 August 2023
Accepted after revision: 28 December 2023
Article published online:
13 February 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Jenssen B, Hocke M, Ignee A. et al. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part VI – Ultrasound-Guided Vascular Interventions TT. Ultraschall in Med 2016; 37: 473-476
- 2 Lorentzen T, Nolsoe CP, Ewertsen C. et al. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part I: General aspects (Short Version). Ultraschall in Med 2015; 36: 464-472
- 3 Strobel T, Blank W, Will U. et al. Incidence of Bleeding in 8172 Percutaneous Ultrasound-Guided Intraabdominal Diagnostic and Therapeutic Interventions – Results of the Prospective Multicenter DEGUM Interventional Ultrasound Study (PIUS Study) TT. Ultraschall in Med 2015; 36: 122-131
- 4 Müller T, Martiny H, Merz E. et al. DEGUM Recommendations on Infection Prevention in Ultrasound and Endoscopic Ultrasound. Ultraschall in Med 2018; 39: 284-303
- 5 Dietrich C, Nuernberg D. et al. Interventional Ultrasound – A Practical Guide and Atlas. Stuttgart: Thieme; 2014
- 6 Fulton N, Buethe J, Gollamudi J. et al. Simulation-Based Training May Improve Resident Skill in Ultrasound-Guided Biopsy. AJR Am J Roentgenol 2016; 207: 1329-1333
- 7 Fornage BD. A simple phantom for training in ultrasound-guided needle biopsy using the freehand technique. J ultrasound Med Off J Am Inst Ultraschall in Med 1989; 8: 701-703
- 8 Gualtieri E, Deppe SA, Sipperly ME. et al. Subclavian venous catheterization: greater success rate for less experienced operators using ultrasound guidance. Crit Care Med 1995; 23: 692-697
- 9 Skolnick ML. The role of sonography in the placement and management of jugular and subclavian central venous catheters. AJR Am J Roentgenol 1994; 163: 291-295
- 10 Armstrong SA, Jafary R, Forsythe JS. et al. Tissue-Mimicking Materials for Ultrasound-Guided Needle Intervention Phantoms: A Comprehensive Review. Ultrasound Med Biol 2023; 49: 18-30
- 11 Li P, Yang Z, Jiang S. Tissue mimicking materials in image-guided needle-based interventions: A review. Mater Sci Eng C Mater Biol Appl 2018; 93: 1116-1131
- 12 García-Carpintero E, Naredo E, Vélez-Vélez E. et al. Phantoms for ultrasound-guided vascular access cannulation training: a narrative review. Med Ultrason 2022;
- 13 Giannotti E, Jethwa K, Closs S. et al. Promoting simulation-based training in radiology: a homemade phantom for the practice of ultrasound-guided procedures. Br J Radiol 2022; 95: 20220354
- 14 Jafary R, Armstrong S, Byrne T. et al. Fabrication and Characterization of Tissue-Mimicking Phantoms for Ultrasound-Guided Cannulation Training. ASAIO J 2022; 68: 940-948
- 15 Spirou GM, Oraevsky AA, Vitkin IA. et al. Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics. Phys Med Biol 2005; 50: N141-53
- 16 Miyashita H, Shimmura S, Kobayashi H. et al. Collagen-immobilized poly(vinyl alcohol) as an artificial cornea scaffold that supports a stratified corneal epithelium. J Biomed Mater Res B Appl Biomater 2006; 76: 56-63
- 17 Chaouat M, Le Visage C, Baille WE. et al. A Novel Cross-linked Poly(vinyl alcohol) (PVA) for Vascular Grafts. Adv Funct Mater 2008; 18: 2855-2861
- 18 Hyon S-H, Cha I W-, Ikada Y. Preparation of transparent poly(vinyl alcohol) hydrogel. Polym Bull 1989; 22: 119-122
- 19 Jiang S, Su Z, Wang X. et al. Development of a new tissue-equivalent material applied to optimizing surgical accuracy. Mater Sci Eng C 2013; 33: 3768-3774
- 20 Hungr N, Long J-A, Beix V. et al. A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures. Med Phys 2012; 39: 2031-2041
- 21 Vogt WC, Jia C, Wear KA. et al. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties. J Biomed Opt 2016; 21: 101405
- 22 Vogt WC, Jia C, Garra BS. et al. Characterization of tissue-simulating polymers for photoacoustic vascular imaging. In: Proc.SPIE. 2014: 910719.
- 23 Cannon LM, Fagan AJ, Browne JE. Novel tissue mimicking materials for high frequency breast ultrasound phantoms. Ultrasound Med Biol 2011; 37: 122-135
- 24 Amini R, Kartchner JZ, Stolz LA. et al. A novel and inexpensive ballistic gel phantom for ultrasound training. World J Emerg Med 2015; 6: 225-228
- 25 Pacioni A, Carbone M, Freschi C. et al. Patient-specific ultrasound liver phantom: materials and fabrication method. Int J Comput Assist Radiol Surg 2015; 10: 1065-1075
- 26 Wang Y, Tai BL, Yu H. et al. Silicone-Based Tissue-Mimicking Phantom for Needle Insertion Simulation. J Med Devices-transactions Asme 2014; 8: 21001
- 27 Farjad Sultan S, Shorten G, Iohom G. Simulators for training in ultrasound guided procedures. Med Ultrason 2013; 15: 125-131
- 28 Steinhausen R. FLEXUS – Flexible Ultraschall-Vorlaufstrecke (June 2023). Accessed October 01, 2023 at: https://fz-u.de/flexus-flexible-ultraschall-vorlaufstrecke/
- 29 Kinkel H. Interventioneller Ultraschall I, DEGUM Modul, AK INVUS. 2017 Accessed October 01, 2023 at: https://www.degum.de/fileadmin/dokumente/sektionen/innere_medizin/Module/Module_10_2017/Modul__IVUS_I_2017.pdf