Synthesis 2024; 56(11): 1807-1814
DOI: 10.1055/a-2241-6966
paper

Zinc/Bismuth-Mediated Allylation Reaction of Biomass Feedstocks: Synthesis of Furanic Diols

Soumen Biswas
,
Prakash Kannaboina
,
We thank the U.S. Army Research Laboratory for funding under cooperative agreement W911-NF-19-2-0138.


This paper is dedicated to Prof. Dennis Curran on the occasion of his 70th birthday.

Abstract

Biomass-based diols have been synthesized by a Zn/Bi-mediated Barbier-type of reaction from furanic aldehydes and allyl halides to access allylated diols. The allylated diols can be readily converted into alkylated diols by hydrogenation. These furanic diols could be potential replacements for fossil fuel based bisphenol A (BPA) which has an adverse endocrine-disrupting effect on humans. This mild and green protocol provides symmetric and nonsymmetric diols in high yields. A chemoselective reduction of allylic double bonds provides diols with unique substitution.

Supporting Information



Publikationsverlauf

Eingereicht: 17. November 2023

Angenommen nach Revision: 10. Januar 2024

Accepted Manuscript online:
10. Januar 2024

Artikel online veröffentlicht:
14. Februar 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sheldon RA. Green Chem. 2014; 16: 950
    • 1b Gallezot P. Chem. Soc. Rev. 2012; 41: 1538
    • 1c Long H, Li X, Wang H, Jia J. Renewable Sustainable Energy Rev. 2013; 26: 344

    • For recent reviews on the synthesis and utilization of furanic monomers from biomass, see:
    • 1d Yan Q, Wu X, Jiang H, Wang H, Xu F, Li H, Zhang H, Yang S. Coord. Chem. Rev. 2024; 502: 215622
    • 1e He L, Chen L, Zheng B, Zhou H, Wang H, Li H, Zhang H, Xu CC, Yang S. Green Chem. 2023; 25: 7410
    • 1f Kucherov FA, Romashov LV, Averochkin GM, Ananikov VP. ACS Sustainable Chem. Eng. 2021; 9: 3011
    • 1g Karlinskii BY, Ananikov VP. Chem. Soc. Rev. 2023; 52: 836
    • 1h Kashparova VP, Chernysheva DV, Klushin VA, Andreeva VE, Kravchenko OA, Smirnova NA. Russ. Chem. Rev. 2021; 90: 750
    • 1i Marshall A, Jiang B, Gauvin RM, Thomas CM. Molecules 2022; 27: 4071 DOI: 10.3390/molecules27134071.
    • 1j Eid N, Ameduri B, Boutevin B. ACS Sustainable Chem. Eng. 2021; 9: 8018
    • 2a Mori R. RSC Sustainability 2023; 1: 179
    • 2b Liu X, Duan X, Wei W, Wang S, Ni B.-J. Green Chem. 2019; 21: 4266
    • 2c Wu X, Luo N, Xie S, Zhang H, Zhang Q, Wang F, Wang Y. Chem. Soc. Rev. 2020; 49: 6198
  • 3 Wan Y, Lee J.-M. ACS Catal. 2021; 11: 2524
  • 4 Vasiljevic T, Harner T. Sci. Total Environ. 2021; 789: 148013
    • 5a Rochester JR. Reprod. Toxicol. 2013; 42: 132
    • 5b Hengstler JG, Foth H, Gebel T, Kramer P.-J, Lilienblum W, Schweinfurth H, Völkel W, Wollin K.-M, Gundert-Remy U. Crit. Rev. Toxicol. 2011; 41: 263
    • 6a Koelewijn S.-F, Ruijten D, Trullemans L, Renders T, Van Puyvelde P, Witters H, Sels BF. Green Chem. 2019; 21: 6622
    • 6b Soto AM, Schaeberle C, Maier MS, Sonnenschein C, Maffini MV. Environ. Sci. Technol. 2017; 51: 1718
    • 7a Sutton CA, Polykarpov A, Jan van den Berg K, Yahkind A, Lea LJ, Webster DC, Sibi MP. ACS Sustainable Chem. Eng. 2020; 8: 18824

    • For the use of furanic diol derivatives as reactive diluents in polymer chemistry, see:
    • 7b Wu J, Qian Y, Sutton CA, La Scala JJ, Webster DC, Sibi MP. ACS Sustainable Chem. Eng. 2021; 9: 15537
    • 7c Hevus I, Kannaboina P, Qian Y, Wu J, Johnson M, Gibbon LR, La Scala JJ, Ulven C, Sibi MP, Webster DC. ACS Appl. Polym. Mater. 2023; 5: 9659
    • 8a Petrides S, Georgiades SN. Trends Org. Chem. 2022; 23: 1
    • 8b Blomberg C, Hartog FA. Synthesis 1977; 18
    • 8c Li C.-J, Chan T.-H. Tetrahedron 1999; 55: 11149
    • 8d Li C.-J. Green Chem. 2002; 4: 1
    • 8e Li C.-J. Tetrahedron 1996; 52: 5643
    • 8f Li C.-J. Chem. Rev. 1993; 93: 2023
  • 9 Bieber LW, da Silva MF, da Costa RC, Silva LO. S. Tetrahedron Lett. 1998; 39: 3655
  • 10 Babu SA, Yasuda M, Shibata I, Baba A. Synlett 2004; 1223
  • 11 Lu X.-Y, Cheng B.-Q, Guo Y.-C, Chu X.-Q, Rao W, Loh T.-P, Shen Z.-L. Org. Chem. Front. 2019; 6: 1581
    • 12a Wada M, Ohki H, Akiba K.-y. Tetrahedron Lett. 1986; 27: 4771
    • 12b Wada M, Akiba K.-y. Tetrahedron Lett. 1985; 26: 4211
    • 12c Jadhav BD, Pardeshi SK. Tetrahedron Lett. 2014; 55: 4948
    • 13a Yin J, Stark RT, Fallis IA, Browne DL. J. Org. Chem. 2020; 85: 2347
    • 13b Potenti S, Gualandi A, Puggioli A, Fermi A, Bergamini G, Cozzi PG. Eur. J. Org. Chem. 2021; 1624
    • 14a Inagi S, Takei N, Fuchigami T. Polym. Chem. 2013; 4: 1221
    • 14b Liu X.-Y, Cheng B.-Q, Guo Y.-C, Chu X.-Q, Li Y.-X, Loh T.-P, Shen Z.-L. Adv. Synth. Catal. 2019; 361: 542
  • 15 Wada S, Hayashi N, Suzuki H. Org. Biomol. Chem. 2003; 1: 2160
  • 16 Wada M, Ohki H, Akiba K.-y. Bull. Chem. Soc. Jpn. 1990; 63: 1738
  • 17 Smith K, Lock S, El-Hiti GA, Wada M, Miyoshi N. Org. Biomol. Chem. 2004; 2: 935
  • 18 Chatterjee S, Dey P, Kanojia SV, Chattopadhyay S, Goswami D. Synth. Commun. 2021; 51: 765
  • 19 Zhao L.-M, Gao H.-S, Li D.-F, Dong J, Sang L.-L, Ji J. Org. Biomol. Chem. 2017; 15: 4359