Synlett
DOI: 10.1055/a-2239-6819
letter

Solvent-Free Synthesis of α-Cyanophosphonates from β-Nitro­styrenes by Using a Deep-Eutectic Solvent Catalyst

Sima Shamsaddinimotlagh
a   Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
,
Mohammad A. Ranjbari
a   Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
,
Hossein Tavakol
a   Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
,
Min Shi
b   State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
› Author Affiliations
This work is based upon research funded by the Iranian National Science Foundation (INSF), under project No. 4002467.


Abstract

α-Cyanophosphonates, which are useful reagents for the Horner–Wittig reaction, were synthesized under solvent-free conditions by using a choline chloride–zinc chloride deep-eutectic solvent (DES) as a catalyst. This is only the second report on the synthesis of these compounds. In the previous report, diethyl trimethylsilyl phosphite was used as a reagent and TiCl4 as a catalyst, whereas in this study, both the reagent (triphenylphosphine) and the catalyst (choline chloride–zinc chloride DES) are cheaper, more readily available, and less harmful than those used in the previous work. Moreover, the process involves an interesting cascade reaction between a β-nitrostyrene and two equivalents of triphenyl phosphite, leading to the desired product by a new synthetic route. The products can be used in the pharmaceutical and agricultural industries, in addition to their synthetic applications in the preparation of α,β-unsaturated nitriles. The reactions were completed on using 20 mol% of DES at 80 °C in six hours. Ten different β-nitrostyrenes were synthesized in yields of 55–87% after purification. β-Nitrostyrenes containing electron-donating groups showed higher yields. The reaction failed when aliphatic or heteroaromatic nitroalkenes or β-nitrostyrenes with electron-withdrawing substituents were employed. Finally, three plausible mechanistic routes are proposed for the reaction, starting with the nucleophilic addition of triphenyl phosphite to the carbon, nitrogen, or oxygen atom in the α-position.

Supporting Information



Publication History

Received: 09 December 2023

Accepted after revision: 05 January 2024

Accepted Manuscript online:
05 January 2024

Article published online:
31 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Lopin C, Gouhier G, Gautier A, Piettre SR. J. Org. Chem. 2003; 68: 9916
  • 2 Sevrain CM, Berchel M, Couthon H, Jaffrès P.-A. Beilstein J. Org. Chem. 2017; 13: 2186
  • 3 Wu J, Sun W, Xia H.-G, Sun X. Org. Biomol. Chem. 2006; 4: 1663
  • 4 Kang YK, Cho MJ, Kim SM, Kim DY. Synlett 2007; 1135
  • 5 Parkinson EI, Erb A, Eliot AC, Ju K.-S, Metcalf WW. Nat. Chem. Biol. 2019; 15: 1049
  • 6 Janicki I, Kiełbasiński P. Adv. Synth. Catal. 2020; 362: 2552
  • 7 Lattanzi A, Orelli LR, Barone P, Massa A, Iannece P, Scettri A. Tetrahedron Lett. 2003; 44: 1333
  • 8 Thiemann T. Mini-Rev. Org. Chem. 2018; 15: 412
  • 9 Yuan C, Ding Y, Long H, Li S. Acta Chim. Sin. (Engl. Ed.) 1983; 41: 541
  • 10 Skagseth S, Akhter S, Paulsen MH, Muhammad Z, Lauksund S, Samuelsen Ø, Leiros H.-KS, Bayer A. Eur. J. Med. Chem. 2017; 135: 159
  • 11 Dijkstra HP, Sprong H, Aerts BN. H, Kruithof CA, Egmond MR, Klein Gebbink RJ. M. Org. Biomol. Chem. 2008; 6: 523
  • 12 Burton DJ, Pietrzyk DJ, Ishihara T, Fonong T, Flynn RM. J. Fluorine Chem. 1982; 20: 617
  • 13 Chen H, Deng C, Zhao Z.-Y, Huang S.-C, Wei Y.-X, Wang Y.-Z. Composites, Part B 2020; 199: 108315
  • 14 Banerjee S, Kar KK, Ghorai MK, Das S. High Perform. Polym. 2015; 27: 402
  • 15 Chen H.-X, Huang L.-J, Liu J.-B, Weng J, Lu G. Phosphorus, Sulfur Silicon Relat. Elem. 2014; 189: 1858
  • 16 Yuan J.-W, Yang L.-R, Mao P, Qu L.-B. RSC Adv. 2016; 6: 87058
  • 17 Pan X.-Q, Zou J.-P, Zhang G.-L, Zhang W. Chem. Commun. 2010; 46: 1721
  • 18 Montchamp J.-L. Acc. Chem. Res. 2014; 47: 77
  • 19 Ren W, Yang Q, Yang S.-D. Pure Appl. Chem. 2019; 91: 87
  • 20 Adler P, Pons A, Li J, Heider J, Brutiu BR, Maulide N. Angew. Chem. Int. Ed. 2018; 57: 13330
  • 21 Engel R. Chem. Rev. 1977; 77: 349
  • 22 Corbridge DE. C. Phosphorus: An Outline of Its Chemistry, Biochemistry and Technology. Elsevier Scientific; Amsterdam: 1978
  • 23 Wang J, Heikkinen LD, Li H, Zu L, Jiang W, Xie H, Wang W. Adv. Synth. Catal. 2007; 349: 1052
  • 24 Jiang Z, Zhang Y, Ye W, Tan C.-H. Tetrahedron Lett. 2007; 48: 51
  • 25 Nazish M, Jakhar A, Gupta N, Khan N.-uH, Kureshy RI. Synlett 2018; 29: 1385
  • 26 Rai V, Namboothiri IN. Tetrahedron: Asymmetry 2008; 19: 2335
  • 27 Enders D, Saint-Dizier A, Lannou M.-I, Lenzen A. Eur. J. Org. Chem. 2006; 29
  • 28 Keglevich G, Bálint E. Molecules 2012; 17: 12821
  • 29 Haribabu B, Prasad GS, Raju CN, Rao VB. M. Curr. Org. Synth. 2017; 14: 883
  • 30 Abell JP, Yamamoto H. J. Am. Chem. Soc. 2008; 130: 10521
  • 31 Jayaprakash SH, Krishna S, Sudha BS, Reddy SB, Sreelakshmi N, Reddy PK, Reddy SC. Synth. Commun. 2015; 45: 2083
  • 32 Bartoli G, Bosco M, Carlone A, Locatelli M, Mazzanti A, Sambri L, Melchiorre P. Chem. Commun. 2007; 722
  • 33 Halimehjani AZ, Namboothiri IN. N, Hooshmand SE. RSC Adv. 2014; 4: 31261
  • 34 Wang Y, Xiong G, Zhang C, Chen Y. J. Org. Chem. 2021; 86: 4018
  • 35 Huang K.-C, Gopula B, Kuo T.-S, Chiang C.-W, Wu P.-Y, Henschke JP, Wu H.-L. Org. Lett. 2013; 15: 5730
  • 36 Gavin DP. Ph.D. Dissertation. Maynooth University; Ireland: 2012
  • 37 Kim DY, Oh DY. Synth. Commun. 1987; 17: 953
  • 38 Kolodyazhnaya OO, Kolodyazhnyi OI. Russ. J. Gen. Chem. 2011; 81: 307
  • 39 Krueger WE, Maloney JR. J. Org. Chem. 1973; 38: 4208
  • 40 Krueger WE, McLean MB, Rizwaniuk A, Maloney JR, Behelfer GL, Boland BE. J. Org. Chem. 1978; 43: 2877
  • 41 Abtahi B, Tavakol H. ChemistrySelect 2020; 5: 12582
  • 42 Ranjbari MA, Tavakol H. J. Org. Chem. 2021; 86: 4756
  • 43 Ranjbari MA, Tavakol H, Manoukian M. Res. Chem. Intermed. 2021; 47: 709
  • 44 Marset X, Ramón DJ, Guillena G. In Catalyst Immobilization: Methods and Applications, Chap. 6. Benaglia M, Puglisi A. Wiley-VCH; Weinheim: 2020: 187
  • 45 Ünlü AE, Arıkaya A, Takaç S. Green Process. Synth. 2019; 8: 355
  • 46 Marset X, Guillena G. Mol. 2022; 27: 8445
  • 47 Sebest F, Haselgrove S, White AJ, Díez-González S. Synlett. 2020; 31: 605
  • 48 Devi RV, Garande AM, Bhate PM. Synlett. 2016; 27: 2807
  • 49 Abtahi B, Tavakol H. Appl. Organomet. Chem. 2021; 35: e6433
  • 50 Shahabi D, Tavakol H. J. Iran. Chem. Soc. 2017; 14: 135
  • 51 Tavakol H, Keshavarzipour F. Appl. Organomet. Chem. 2017; 31: e3811
  • 52 α-Cyanophosphonates 3aj; General Procedure A 10 mL flask was charged with P(OPh)3 (2; 620.6 mg), the appropriate nitrostyrene 1 (1 mmol), and a 1:2 choline chloride–ZnCl2 mixture (82.4 mg, 0.2 mmol, 20 mol%), and the flask was immersed in an oil bath on a magnetic heater–stirrer. The mixture was then stirred under an inert atmosphere at 80 °C for about 6 h while the progress of the reaction was monitored by TLC (EtOAc–hexane, 7:3). When the reaction was complete, H2O (5 mL) was added to the mixture and the organic phase was extracted with EtOAc (2 × 10 mL). The combined organic phase was washed with sat. brine (3 × 15 mL), then dried (Na2SO4) and concentrated. The crude product was purified by column chromatography [silica gel, EtOAc–hexane (7:3)]. Diphenyl [Cyano(phenyl)methyl]phosphonate (3a; MW = 349.32) Colorless oil; yield: 283 mg (81%). FTIR (KBr): 3067, 2879, 2254, 1588, 1485, 1183, 951, 937, 771, 592 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.59 (m, 2 H), 7.45 (m, 3 H), 7.35 (t, J = 7.9 Hz, 2 H), 7.25 (m, 3 H), 7.20–7.12 (m, 3 H), 6.94 (d, J = 8.5 Hz, 2 H), 4.65 (d, J = 26.7 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 149.9 (d, J = 9.9 Hz), 149.7 (d, J = 9.3 Hz), 130.0 (m), 129.9 (d, J = 0.9 Hz), 129.4 (d, J = 3.0 Hz), 129.3 (d, J = 3.4 Hz), 129.1 (d, J = 5.3 Hz), 126.5 (d, J = 8.6 Hz), 126.0 (d, J = 1.2 Hz), 125.8 (d, J = 1.2 Hz), 120.4 (d, J = 4.4 Hz), 120.2 (d, J = 4.5 Hz), 114.7 (d, J = 10.5 Hz), 36.8 (d, J = 142.8 Hz).< Diphenyl [Cyano(3-methoxyphenyl)methyl]phosphonate (3b; MW = 379.35) Colorless oil; yield: 269 mg (77%). FTIR (KBr): 2964, 2892, 2248, 1584, 1509, 1482, 1284, 1263, 1207, 1183, 963, 939 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 7.49–7.38 (m, 5 H), 7.27 (m, 2 H), 7.18 (m, 1 H), 7.11–7.02 (m, 6 H), 6.11 (d, J = 27.7 Hz, 1 H), 3.78 (s, 3 H). 13C NMR (76 MHz, DMSO-d 6): δ = 160.0 (d, J = 3.0 Hz), 150.0 (d, J = 2.8 Hz), 149.9 (d, J = 2.5 Hz), 131.0 (d, J = 2.9 Hz), 130.6, 129.2 (d, J = 8.5 Hz), 126.4, 121.6 (d, J = 5.4 Hz), 120.6 (d, J = 3.3 Hz), 116.2 (d, J = 9.9 Hz), 115.5 (d, J = 5.4 Hz), 114.9 (d, J = 3.2 Hz), 55.8, 35.9 (d, J = 141.8 Hz). Diphenyl [Cyano(4-methoxyphenyl)methyl]phosphonate (3c; MW = 379.35) Colorless oil; yield: 304 mg (87%). FTIR (KBr): 2964, 2892, 2249, 1586, 1484, 1284, 1263, 1183, 1160, 963, 939, 770 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 7.54–7.34 (m, 6 H), 7.26 (m, 2 H), 7.15–6.95 (m, 6 H), 6.04 (d, J = 27.6 Hz, 1 H), 3.80 (s, 3 H). 13C NMR (76 MHz, DMSO-d 6): δ = 160.2 (d, J = 3.2 Hz), 150.0 (d, J = 2.6 Hz), 149.9 (d, J = 2.3 Hz), 130.9 (d, J = 5.4 Hz), 130.6, 126.39, 120.7 (d, J = 4.3 Hz), 119.3 (d, J = 8.9 Hz), 116.4 (d, J = 9.3 Hz), 115.2 (d, J = 2.7 Hz), 55.8, 36.0.