Synthesis 2024; 56(05): 771-776
DOI: 10.1055/a-2218-7443
paper

Mild Metal-Free 1,2-Dichlorination of Alkynes by NCS-PPh3-H2O System

Jianan Yuan
a   Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan
,
Nurcahyo Iman Prakoso
a   Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan
b   Chemistry Department, Universitas Islam Indonesia, Indonesia
,
Tatsuya Morozumi
a   Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan
c   Section of chemistry, Faculty of Science, Hokkaido University, N10W8 Sapporo 060-0810, Japan
,
Taiki Umezawa
a   Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan
d   Section of Environmental Material Science, Faculty of Environmental Earth Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan
› Institutsangaben
This work was financially supported by Grant-in-Aid for Young Scientists (B) [23710245] and Grant-in-Aid for Scientific Research (C) [16K01908] from the Japan Society for the Promotion of Science (JSPS).


Abstract

Facile dichlorination of alkynes to give 1,2-dichloroalkenes is described. Previous studies for the synthesis of the 1,2-dichloroalkenes from the corresponding alkynes require stoichiometric amount of copper salt, preparation of the chlorinating reagent from hazardous compounds such as molecular chlorine, and highly acidic conditions. In this paper, only ubiquitous reagents, NCS-PPh3-H2O, are used to prepare the 1,2-dichloroalkenes from the alkynes under mild conditions. Various functional groups such as esters, ethers or carbamates were tolerated under these reaction conditions.

Supporting Information



Publikationsverlauf

Eingereicht: 15. September 2023

Angenommen nach Revision: 28. November 2023

Accepted Manuscript online:
28. November 2023

Artikel online veröffentlicht:
09. Januar 2024

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gribble GW. Environ. Chem. 2015; 12: 396
    • 1b Wagner C, Omari ME, König GM. J. Nat. Prod. 2009; 72: 540
  • 2 Lin R, Amrute AP, Pérez-Ramírez J. Chem. Rev. 2017; 117: 4182
  • 3 Benedetto Tiz D, Bagnoli L, Rosati O, Marini F, Sancineto L, Santi C. Molecules 2022; 27: 1643
    • 4a Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 4b Petrone D. A, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
    • 5a Khan FA, Prabhudas B, Dash J, Sahu N. J. Am. Chem. Soc. 2000; 122: 9558
    • 5b Schuh K, Glorius F. Synthesis 2007; 2297
    • 5c Hussain M, Sung TV, Langer P. Synlett 2012; 23: 2735
    • 6a Saikia I, Borah AJ, Phukan P. Chem. Rev. 2016; 116: 6837
    • 6b Ajvazi N, Stavber S. Compounds 2022; 2: 3
    • 7a Tendil J, Vitrney M, Vessiere R. Tetrahedron 1974; 30: 579
    • 7b Barluenga J, Rodríguez MA, Campos PJ. J. Org. Chem. 1990; 55: 3104
    • 7c Mukherjee A, Pati K, Liu R.-S. J. Org. Chem. 2009; 74: 6311
    • 7d Mao W, Zhang J, Li X, Li C, Tian H. Chem. Commun. 2017; 53: 5052
    • 8a Hsu T.-LC, Chang I-J, Ward DL, Nocera DG. Inorg. Chem. 1994; 33: 2932
    • 8b Thoreson KA, McNeill K. Dalton Trans. 2011; 40: 1646
    • 8c Zeng X, Tu Y, Zhang Z, You C, Wu J, Ye Z, Zhao J. J. Org. Chem. 2019; 84: 4458
  • 9 Piron F, Vanthuyne N, Joulin B, Naubron J.-V, Cismaş C, Terec A, Varga RA, Roussel C, Roncali J, Grosu I. J. Org. Chem. 2009; 74: 9062
  • 10 Schlama T, Gabriel K, Gouverneur V, Mioskowski C. Angew. Chem., Int. Ed. Engl. 1997; 36: 2342
    • 11a Lei Y.-R, Liang J.-Y, Wang Y.-J, Chen Z. Tetrahedron Lett. 2021; 70: 152968
    • 11b Chaisan N, Ruengsangtongkul S, Thongsornkleeb C, Tummatorn J, Ruchirawat S. Synlett 2022; 33: 1426
    • 12a Umezawa T, Shibata M, Kaneko K, Okino T, Matsuda F. Org. Lett. 2011; 13: 904
    • 12b Umezawa T, Matsuda F. Tetrahedron Lett. 2014; 55: 3003
    • 12c Umezawa T, Shibata M, Tamagawa R, Matsuda F. Org. Lett. 2019; 21: 7731
    • 12d Prakoso NI, Matsuda F, Umezawa T. Org. Biomol. Chem. 2021; 19: 7822
    • 12e Umezawa T, Prakoso NI, Tsuji K, Ogura Y, Sato T, Matsuda F. Bull. Chem. Soc. Jpn. 2022; 95: 1491
    • 13a Shibuya GM, Kanady JS, Vanderwal CD. J. Am. Chem. Soc. 2008; 130: 12514
    • 13b Kamada Y, Kitamura Y, Tanaka T, Yoshimitsu T. Org. Biomol. Chem. 2013; 11: 1598
    • 14a Yoshimitsu T, Fukumoto N, Nakatani R, Kojima N, Tanaka T. J. Org. Chem. 2010; 75: 5425
    • 14b Saska J, Lewis W, Paton RS, Denton RM. Chem. Sci. 2016; 7: 7040
  • 15 Kamada Y, Kitamura Y, Tanaka T, Yoshimitsu T. Org. Biomol. Chem. 2013; 11: 1598
  • 16 We believe that Cl–OH intermediate from NCS and water did not form because it was reported that a rate constant of Cl–OH formation is much smaller than that of formation of NCS and water, see: Hussain A, Higuchi T, Hurwitz A, Pitman IH. J. Pharm. Sci. 1972; 61: 371
  • 17 Zeng X, Liu S, Hammond GB, Xu B. ACS Catal. 2018; 8: 904
  • 18 Rosenberg MG, Brinker UH. J. Org. Chem. 2003; 68: 4819