CC BY-NC-ND 4.0 · Laryngorhinootologie 2024; 103(S 01): S43-S99
DOI: 10.1055/a-2216-8879
Referat

Interdisziplinäre Therapie der Erkrankungen der Orbita

Interdisciplinary Management of Orbital Diseases
A Eckstein
,
H.-J. Welkoborsky
1   Univ. Klinik für Augenheilkunde Universitätsmedizin Essen, Klinik für HNO-Heilkunde, Kopf- und Halschirurgie, Klinikum Nordstadt der KRH
› Author Affiliations

Zusammenfassung

Die Diagnostik und Therapie von Erkrankungen der Orbita ist eine interdisziplinäre Aufgabe, an der u.a. die Fachdisziplinen HNO-Heilkunde, Augenheilkunde, Radiologie, Strahlentherapie, MKG-Chirurgie, Endokrinologie und Pädiatrie beteiligt sind. Der vorliegende Übersichtsartikel stellt eine Zusammenstellung der häufigsten Erkrankungen dar, mit denen die Fachdisziplinen HNO-Heilkunde und Augenheilkunde interdisziplinär befasst sind. Es werden die akuten entzündlichen Erkrankungen incl. orbitaler Komplikationen, die autoimmunologischen Erkrankungen der Orbita incl. der endokrinen Orbitopathie, und die tumorösen Erkrankungen besprochen. Neben der Diagnostik und der Beschreibung der Klinik wird besonderes Augenmerk auf die interdisziplinäre Therapie gelegt. Abgerundet wird der Übersichtsartikel mit der Beschreibung der wichtigsten chirurgischen Zugangswege zur Orbita, ihre Indikationen und mögliche Komplikationen. Die Autoren haben versucht, trotz der knappen Darstellung die relevanten Fakten zu beschreiben.

Abstract

Diagnosis and therapy of orbital diseases is an interdisciplinary challenge, in which i.e. otorhinolaryngologists, ophthalmologists, radiologists, radiation therapists, maxillo-facial surgeons, endocrinologists, and pediatricians are involved. This review article describes frequent diseases which both, otolaryngologists and ophthalmologists are concerned with in interdisciplinary settings. In particular the inflammatory diseases of the orbit including orbital complications, autoimmunological diseases of the orbit including Grave´s orbitopathy, and primary and secondary tumors of the orbit are discussed. Beside describing the clinical characteristics and diagnostic steps the article focusses on the interdisciplinary therapy. The review is completed by the presentation of most important surgical approaches to the orbit, their indications and possible complications. The authors tried to highlight the relevant facts despite the shortness of the text.



Publication History

Article published online:
02 May 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Graß SK, Welkoborsky HJ. Orbitale Komplikationen. In: Welkoborsky HJ, Wiechens B, Hinni ML (Hrsg.). Orbita: Thieme Verlag; 2016: 112-124
  • 2 Stammberger H. Komplikationen der Entzündungen der Nasennebenhöhlen und des Oberkiefers. Europ Arch Otolaryngol Suppl. I 1993; 14-15
  • 3 Schmiedl A. Topographische Anatomie der Orbita. In: Welkoborsky HJ, Wiechens B, Hinni ML (Hrsg.). Orbita: Thieme Verlag; 2016. S 5-42
  • 4 Aring AM, Chan MM. Acute Rhinosinusitis in adults. Am Fam Physician 2011; 83: 1057-1063
  • 5 Chang YS, Chen PL, Hung JH, Chen HY. et al. Orbital complications of paranasal sinusitis in Taiwan, 1988 through 2015: Acute ophthalmological manifestations, diagnosis, and management. PLoS One 2017; 12: e0184477
  • 6 Danishyar A, Sergent SR. Orbital Cellulitis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020
  • 7 Nocon CC, Baroody FM. Acute rhinosinusitis in children. Curr Allergy Asthma Rep 2014; 14: 443
  • 8 Ang T, Cameron C, Tong JY, Wilcsek G. et al. Methicillin-resistant Staphylococcus aureus-associated orbital cellulitis: case series. Int Ophthalmol 2023; 43: 2925-2933
  • 9 Dayakar Y, Jayagayathri R, Padmanaban K, Ramasamy R. et al. Bacterial orbital cellulitis-A review. Indian J Ophthalmol 2023; 71: 2687-2693
  • 10 Sotoudeh H, Shafaat O, Aboueldahab N, Vaphiades M. et al. Superior ophthalmic vein thrombosis: What radiologist and clinician must know?. Eur J Radiol Open 2019; 6: 258-264
  • 11 Chen MC, Ho YH, Chong PN, Chen JH. A rare case of septic cavernous sinus thrombosis as a complication of sphenoid sinusitis. Ci Ji Yi Xue Za Zhi 2019; 31: 63-65
  • 12 Welkoborsky HJ, Kraft T. Pathophysiologische Aspekte der Orbita. In: Welkoborsky HJ, Wiechens B, Hinni ML (Hrsg.). Orbita: Thieme Verlag; 2016. S 35-43
  • 13 Sarkar P, Mehtani A, Gandhi HC, Dubey V. et al. Atypical optic neuritis: An overview. Indian J Ophthalmol 2021; 69: 27-35
  • 14 Serra EC, Sverzut CE, Trivellato AE. Orbital abscess after facial trauma. Braz Dent J 2009; 20: 341-346
  • 15 Danishyar A, Sergent SR. Orbital Cellulitis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023
  • 16 Graß SK, Welkoborsky HJ, Glien A, Plontke S. Orbitale Komplikationen. HNO 2018; 66: 800-811
  • 17 Welkoborsky HJ, Pitz S, Graß S, Breuer B. et al. Sinogenic orbital complications. Dtsch Arztebl Int 2022; 119: 31-37 DOI: 10.3238/arztebl.m2021.0379.
  • 18 Ben Amor M, Khalifa Z, Romdhane N, Zribi S. et al. Orbital complications of sinusitis. J Fr Ophtalmol 2013; 36: 488-493 DOI: 10.1016/j.jfo.2012.06.027.
  • 19 Chrobok V, Pellant A, Mandysova P, Mejzlik J. et al. Rhinogenic Orbital Inflammation – What has Changed over the Past 50 Years?. Acta Medica (Hradec Kralove) 2019; 62: 94-98
  • 20 Chandler JR, Langenbrunner DJ, Stevens ER. The pathogenesis of orbital complications I n acute sinusitis. Laryngoscope 1970; 80: 1414-1428
  • 21 Kastenbauer E. Komplikationen der Entzündungen der Nasennebenhöhlen und des Oberkiefers, in: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg), Oto-Rhino-Laryngologie in Klinik und Praxis, Band 2. Thieme; Stuttgart: 1992. S 234-246
  • 22 Plewa MC, Tadi P, Gupta M. Cavernous Sinus Thrombosis In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023
  • 23 Bhatia H, Kaur R, Bedi R. MR imaging of cavernous sinus thrombosis. Eur J Radiol Open. 2020. 7. 100226 DOI: 10.1016/j.ejro.2020.100226. eCollection 2020
  • 24 Bae C, Bourget D. Periorbital Cellulitis In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023
  • 25 Pelletier J, Koyfman A, Long B. High risk and low prevalence diseases: Orbital cellulitis. Am J Emerg Med 2023; 68: 1-9 DOI: 10.1016/j.ajem.2023.02.024.. Epub 2023 Feb 26
  • 26 Chin CJ, Clark A, Roth K, Fung K. Development of a novel simulation-based test trainer for management of retrobulbar hematoma. Int Forum Allergy Rhinol 2019; DOI: 10.1002/alr.22494.
  • 27 Houck J, Mangal R, Vandillen C, Ganti L. et al. Orbital Compartment Syndrome: How a Young Manʼs Vision was Saved by the Timely Actions of an Emergency Medicine Physician. Cureus 2019; 11: e5057 DOI: 10.7759/cureus.5057.
  • 28 Yung CW, Moorthy RS, Lindley D, Ringle M. et al. Efficacy of lateral canthotomy and cantholysis in orbital hemorrhage. Ophthal Plast Reconstr Surg 1994; 10: 137-141
  • 29 Khalifa BC. Extent of resection of the lamina papyracea in medial subperiosteal abscess. Otolaryngol Head Neck Surg 2011; 145: 161-164 DOI: 10.1177/0194599810396621.
  • 30 El Mograbi A, Ritter A, Najjar E, Soudry E. Orbital Complications of Rhinosinusitis in the Adult Population. Analysis of Cases Presenting to a Tertiary Medical.
  • 31 Sekhar V, Ao J, Iqbal I, Ooi EH. et al. Effectiveness of endoscopic versus external surgical approaches in the treatment of orbital complications of rhinosinusitis: a systematic review protocol. JBI Database System Rev Implement Rep 2019; 17: 2378-2389
  • 32 Farooq AV, Patel RM, Lin AY, Setabutr P. et al. Fungal Orbital Cellulitis: Presenting Features, Management and Outcomes at a Referral Center. Orbit. 2015; 34: 152-159
  • 33 Zayet S, Zaghdoudi A, Ammari L, Kilani B. et al. Cerebro-rhino-orbital mucormycosis and aspergillosis coinfection in a patient with diabetes mellitus: A case report. IDCases. 2020; 23: e01022 DOI: 10.1016/j.idcr.2020.e01022.. eCollection 2021
  • 34 Pellegrini F, Mandarà E, Stafa A, Meli S. Frozen overnight: Acute orbital apex syndrome caused by aspergillosis. Eur J Ophthalmol 2023; 33: NP45-NP48
  • 35 Sweet R, Hovenden M, Harvey CE, Peterson W. et al. Rhino-Orbital Cerebral Mucormycosis in a Diabetic Patient: An Emergency Medicine Case Report. J Emerg Med 2023; 64: 385-387
  • 36 Luo YT, Zhu CR, He B, Yan AH. et al. Diagnostic and therapeutic strategies of acute invasive fungal rhinosinusitis. Asian J Surg 2023; 46: 58-65
  • 37 Benlamkaddem S, Zdaik G, Doughmi D, Bennis A. et al. Rhino-Orbital Cerebral Mucormycosis: A Fatal Evolution. Cureus. 2023; 15: e37837
  • 38 Abhinav S, Fortes P, Chan BH, Sachs CJ. From delay to diagnosis: Chronic invasive fungal rhinosinusitis presenting with facial and orbital complications. Clin Case Rep 2023; 11: e7600 DOI: 10.1002/ccr3.7600.. eCollection 2023 Jun.
  • 39 Ashraf EM, Elbedewy HA, Proposed Diagnostic A. Algorithm for Fungal Orbital Infections after 20 Years of Experience in a Tertiary Eye Care Center-Egypt. Ocul Immunol Inflamm 2023; 31: 105-111
  • 40 Caglar E, Tarkan O, Surmelioglu O, Dagkiran M. et al. Alternating pattern of rhino-orbital-cerebral mucormycosis with COVID-19 in diabetic patients. Eur Arch Otorhinolaryngol 2023; 280: 219-226
  • 41 Brijesh T, Ahuja S, Acharya S, Kaushik S. A retrospective clinicopathological analysis of rhino-orbital mucormycosis in second wave of COVID-19. Indian J Pathol Microbiol 2023; 66: 411-414
  • 42 Neelam S, Wani SN, Behl T, Singh S. et al. Focusing COVID-19-associated mucormycosis: a major threat to immunocompromised COVID-19. Environ Sci Pollut Res Int 2023; 30: 9164-9183
  • 43 Amit K, Mathialagan A, Aishwarya A, Ravisankar, Bhuskute G, et al. Is mucormycosis the end? A comprehensive management of orbit in COVID associated rhino-orbital-cerebral mucormycosis: preserving the salvageable. Eur Arch Otorhinolaryngol 2023; 280: 819-827
  • 44 Celik M, Kaya K-H, Yegin Y, Olgun B. et al. Anatomical Factors in Children with Orbital Complications Due to Acute Rhinosinusitis. Iran J Otorhinolaryngol 2019; 31: 289-295
  • 45 Jabarin B, Marom T, Gavriel H, Eviatar E. et al. Orbital complications secondary to acute rhinosinusitis in toddlers: A unique age group. Int J Pediatr Otorhinolaryngol 2019; 121: 46-49
  • 46 Almahboob A, Alhussien A, AlAmari K, Khan A. et al. Does Adenoid Hypertrophy Increase the Risk of Orbital Complication in Children with Acute Sinusitis?. Indian J Otolaryngol Head Neck Surg 2023; 75: 352-357
  • 47 Dennison SH, Aks LS, Eriksson M, Granath A. et al. Serious complications due to acute rhinosinusitis in children up to five years old in Stockholm, Sweden – Still a challenge in the pneumococcal conjugate vaccine era. Int J Pediatr Otorhinolaryngol 2019; 121: 50-54
  • 48 Levy DA, Pecha PP, Nguyen SA, Schlosser RJ. Trends in complications of pediatric rhinosinusitis in the United States from 2006-2016. Int J Pediatr Otorhinolaryngol 2020; 128: 109695 DOI: 10.1106/j.ijporl.2019.109695.
  • 49 Casanueva R, Villanueva E, Llorente JL, Coca-Pelaz A. Management options for orbital complications of acute rhinosinusitis in pediatric patients. Am J Otolaryngol 2022; 43: 103452
  • 50 Trbojević T, Penezić A, Sitaš I, Velimir M. et al. Interdisciplinary care in orbital complications of acute rhinosinusitis in children. Indian J Ophthalmol 2023; 71: 242-248
  • 51 Welkoborsky H-J, Graß S, Deichmüller C, Bertram O. et al. Orbital Complications in Children – Differential Diagnosis of a Challenging Disease. Europ. Arch. Otolaryngol 2015; 272: 1157-1163
  • 52 Lehnerdt G, Peraud A, Berghaus A, Hoffmann TK. et al. Orbitale und intrakranielle Komplikationen akuter Sinusitiden. Diagnostik und Therapie bei Kindern und Jugendlichen. HNO 2011; 59: 75-86
  • 53 Gaudreau K, Thome C, Weaver B, Boreham DR. Cataract Formation and Low-Dose Radiation Exposure from Head Computed Tomography (CT) Scans in Ontario, Canada, 1994-2015. Radiat Res 2020; 193: 322-330
  • 54 Meulepas JM, Ronckers CM, Smets AMJB, Nievelstein RAJ. et al. Radiation Exposure From Pediatric CT Scans and Subsequent Cancer Risk in the Netherlands. J Natl Cancer Inst 2019; 111: 256-263
  • 55 Pearce MS, Salotti JA, Little MP, McHugh K. et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380: 499-505
  • 56 Bernier M-O, Rehel J-L, Brisse HJ, Wu-Zhou X. et al. Radiation exposure from CT in early childhood: a French large scale multicentre study. Br J Radiol 2012; 85: 53-60
  • 57 Pindrik J, Huisman TA, Mahesh M, Tekes A. et al. Analysis of limited-sequence head computed tomography for children with shunted hydrocephalus: potential to reduce diagnostic radiation exposure. J Neurosurg Pediatr. 2013
  • 58 Morton RP, Reynolds RM, Ramakrishna R, Levitt MR. et al. Low-dose head computed tomography in children: a single institutional experience in pediatric radiation risk reduction. J Neurosurg Pediatr 2013; 12: 406-410
  • 59 Singh M, Negi A, Zadeng Z, Verma R. et al. Long-Term ophthalmic Outcomes in Pediatric Orbital Cellulitis: A Prospective, Multidisciplinary Study From a Tertiary-Car Referral Institute. J Pediatr Ophthalmol Strabismus 2019; 56: 333-339
  • 60 Klingenstein A, Hintschich C. Specific inflammations of the orbit. Ophthalmologe 2021; 118: 794-800
  • 61 Gordon LK. Orbital inflammatory disease: a diagnostic and therapeutic challenge. Eye (Lond) 2006; 20: 1196-1206
  • 62 Eade EL. et al. Review of extraocular muscle biopsies and utility of biopsy in extraocular muscle enlargement. Br J Ophthalmol 2018; 102: 1586-1590
  • 63 Mombaerts I, Rose GE, Garrity JA. Orbital inflammation: Biopsy first. Surv Ophthalmol 2016; 61: 664-669
  • 64 Reinbacher KE. et al. Minimal invasive biopsy of intraconal expansion by PET/CT/MRI image-guided navigation: a new method. J Craniomaxillofac Surg 2014; 42: 1184-1189
  • 65 Unadkat SN, Rennie CE, Grant WE. Endoscopic transnasal image-guided approach to diagnosis in orbital apex and optic canal lesions. J Laryngol Otol 2019; 133: 501-507
  • 66 Davies TF. et al. Gravesʼ disease. Nat Rev Dis Primers 2020; 6: 52
  • 67 Krieger CC, Neumann S, Gershengorn MC. TSH/IGF1 receptor crosstalk: Mechanism and clinical implications. Pharmacol Ther 2020; 209: 107502
  • 68 Smith TJ, Janssen J. Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy. Endocr Rev 2019; 40: 236-267
  • 69 Smith TJ, Hegedus L, Douglas RS. Role of insulin-like growth factor-1 (IGF-1) pathway in the pathogenesis of Gravesʼ orbitopathy. Best Pract Res Clin Endocrinol Metab 2012; 26: 291-302
  • 70 Smith TJ. Understanding Pathogenesis Intersects With Effective Treatment for Thyroid Eye Disease. J Clin Endocrinol Metab 2022; 107: S13-S26
  • 71 Krause G, Eckstein A, Schulein R. Modulating TSH Receptor Signaling for Therapeutic Benefit. Eur Thyroid J 2020; 9: 66-77
  • 72 Kumar S. et al. Evidence for enhanced adipogenesis in the orbits of patients with Gravesʼ ophthalmopathy. J Clin Endocrinol Metab 2004; 89: 930-935
  • 73 Kumar S. et al. A stimulatory TSH receptor antibody enhances adipogenesis via phosphoinositide 3-kinase activation in orbital preadipocytes from patients with Gravesʼ ophthalmopathy. J Mol Endocrinol 2011; 46: 155-163
  • 74 Fang S. et al. Interaction Between CCR6+ Th17 Cells and CD34+ Fibrocytes Promotes Inflammation: Implications in Gravesʼ Orbitopathy in Chinese Population. Invest Ophthalmol Vis Sci 2018; 59: 2604-2614
  • 75 Fang S. et al. Mechanisms That Underly T Cell Immunity in Gravesʼ Orbitopathy. Front Endocrinol (Lausanne) 2021; 12: 648732
  • 76 Fang S. et al. Evidence for Associations Between Th1/Th17 “Hybrid” Phenotype and Altered Lipometabolism in Very Severe Graves Orbitopathy. J Clin Endocrinol Metab 2020; 105: 6 PMID: 32173759
  • 77 Gortz GE. et al. Macrophage-Orbital Fibroblast Interaction and Hypoxia Promote Inflammation and Adipogenesis in Gravesʼ Orbitopathy. Endocrinology 2022; 164 (2): 36477465
  • 78 Bartley GB. The epidemiologic characteristics and clinical course of ophthalmopathy associated with autoimmune thyroid disease in Olmsted County, Minnesota. Trans Am Ophthalmol Soc 1994; 92: 477-588
  • 79 Abraham-Nordling M. et al. Incidence of hyperthyroidism in Sweden. Eur J Endocrinol 2011; 165: 899-905
  • 80 Laurberg P. et al. Incidence and clinical presentation of moderate to severe gravesʼ orbitopathy in a Danish population before and after iodine fortification of salt. J Clin Endocrinol Metab 2012; 97: 2325-2332
  • 81 Oeverhaus M. et al. Influence of biological sex, age and smoking on Gravesʼ orbitopathy-a ten-year tertiary referral center analysis. Front Endocrinol (Lausanne) 2023; 14: 1160172
  • 82 Chin YH. et al. Prevalence of thyroid eye disease in Gravesʼ disease: A meta-analysis and systematic review. Clin Endocrinol (Oxf) 2020; 93: 363-374
  • 83 Wiersinga W. et al. Predictive score for the development or progression of Gravesʼ orbitopathy in patients with newly diagnosed Gravesʼ hyperthyroidism. Eur J Endocrinol 2018; 178: 635-643
  • 84 Eckstein AK. et al. Thyrotropin receptor autoantibodies are independent risk factors for Gravesʼ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab 2006; 91: 3464-3470
  • 85 Stohr M. et al. Predicting the Course of Gravesʼ Orbitopathy Using Serially Measured TSH-Receptor Autoantibodies by Automated Binding Immunoassays and the Functional Bioassay. Horm Metab Res 2021; 53: 435-443
  • 86 Stohr M. et al. Predicting the Relapse of Hyperthyroidism in Treated Gravesʼ Disease with Orbitopathy by Serial Measurements of TSH-Receptor Autoantibodies. Horm Metab Res 2021; 53: 235-244
  • 87 Pfeilschifter J, Ziegler R. Smoking and endocrine ophthalmopathy: impact of smoking severity and current vs lifetime cigarette consumption. Clin Endocrinol (Oxf) 1996; 45: 477-481
  • 88 Eckstein A. et al. Impact of smoking on the response to treatment of thyroid associated ophthalmopathy. Br J Ophthalmol 2003; 87: 773-776
  • 89 Lanzolla G. et al. Relationship between serum cholesterol and Gravesʼ orbitopathy (GO): a confirmatory study. J Endocrinol Invest 2018; 41: 1417-1423
  • 90 Stein JD. et al. Risk factors for developing thyroid-associated ophthalmopathy among individuals with Graves disease. JAMA Ophthalmol 2015; 133: 290-296
  • 91 Nilsson A, Tsoumani K, Planck T. Statins Decrease the Risk of Orbitopathy in Newly Diagnosed Patients with Graves Disease. J Clin Endocrinol Metab 2021; 106: 1325-1332
  • 92 Laurberg P. et al. TSH-receptor autoimmunity in Gravesʼ disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur J Endocrinol 2008; 158: 69-75
  • 93 Bartalena L. et al. Relation between therapy for hyperthyroidism and the course of Gravesʼ ophthalmopathy. N Engl J Med 1998; 338: 73-78
  • 94 Tallstedt L. et al. Occurrence of ophthalmopathy after treatment for Gravesʼ hyperthyroidism. The Thyroid Study Group. N Engl J Med 1992; 326: 1733-1738
  • 95 Iwama S. et al. Immune checkpoint inhibitor-related thyroid dysfunction. Best Pract Res Clin Endocrinol Metab 2022; 36: 101660
  • 96 Wong V. et al. Thyrotoxicosis induced by alpha-interferon therapy in chronic viral hepatitis. Clin Endocrinol (Oxf) 2002; 56: 793-798
  • 97 Medic F. et al. Amiodarone and Thyroid Dysfunction. Acta Clin Croat 2022; 61: 327-341
  • 98 Lee HJ. et al. Immunogenetics of autoimmune thyroid diseases: A comprehensive review. J Autoimmun 2015; 64: 82-90
  • 99 Lee HJ. et al. Genetics and epigenetics of autoimmune thyroid diseases: Translational implications. Best Pract Res Clin Endocrinol Metab 2023; 37: 101661
  • 100 Topcu CB, Celik O, Tasan E. Effect of stressful life events on the initiation of gravesʼ disease. Int J Psychiatry Clin Pract 2012; 16: 307-311
  • 101 Matos-Santos A. et al. Relationship between the number and impact of stressful life events and the onset of Gravesʼ disease and toxic nodular goitre. Clin Endocrinol (Oxf) 2001; 55: 15-19
  • 102 Winsa B. et al. Stressful life events and Gravesʼ disease. Lancet 1991; 338: 1475-1479
  • 103 Uddin JM, Rubinstein T, Hamed-Azzam S. Phenotypes of Thyroid Eye Disease. Ophthalmic Plast Reconstr Surg 2018; 34: S28-S33
  • 104 Eckstein AK. et al. Euthyroid and primarily hypothyroid patients develop milder and significantly more asymmetrical Graves ophthalmopathy. Br J Ophthalmol 2009; 93: 1052-1056
  • 105 European Group on Graves O et al. Clinical assessment of patients with Gravesʼ orbitopathy: the European Group on Gravesʼ Orbitopathy recommendations to generalists, specialists and clinical researchers. Eur J Endocrinol 2006; 155: 387-389
  • 106 Mourits MP. et al. Clinical criteria for the assessment of disease activity in Gravesʼ ophthalmopathy: a novel approach. Br J Ophthalmol 1989; 73: 639-644
  • 107 Bartalena L. et al. Consensus statement of the European Group on Gravesʼ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol 2008; 158: 273-285
  • 108 Garip Kuebler A. et al. Evaluating the interreader agreement and intrareader reproducibility of Visual Field Defects in Thyroid Eye Disease-Compressive Optic Neuropathy. Eye (Lond) 2022; 36: 724-732
  • 109 Garip Kuebler A. et al. A pathological indicator for dysthyroid optic neuropathy: tritan color vision deficiency. Graefes Arch Clin Exp Ophthalmol 2021; 259: 3421-3426
  • 110 North VS, Freitag SK. A Review of Imaging Modalities in Thyroid-associated Orbitopathy. Int Ophthalmol Clin 2019; 59: 81-93
  • 111 Starks VS. et al. Visual field and orbital computed tomography correlation in dysthyroid optic neuropathy due to thyroid eye disease. Orbit 2020; 39: 77-83
  • 112 Dolman PJ, Rootman J. VISA Classification for Graves orbitopathy. Ophthalmic Plast Reconstr Surg 2006; 22: 319-324
  • 113 Burch HB. et al. Management of Thyroid Eye Disease: A Consensus Statement by the American Thyroid Association and the European Thyroid Association. Thyroid 2022; 32: 1439-1470
  • 114 Terwee CB. et al. Measuring disease activity to predict therapeutic outcome in Gravesʼ ophthalmopathy. Clin Endocrinol (Oxf) 2005; 62: 145-155
  • 115 Marino M. et al. Orbital diseases mimicking gravesʼ orbitopathy: a long-standing challenge in differential diagnosis. J Endocrinol Invest 2020; 43: 401-411
  • 116 Kahaly GJ. et al. Randomized, single blind trial of intravenous versus oral steroid monotherapy in Gravesʼ orbitopathy. J Clin Endocrinol Metab 2005; 90: 5234-5240
  • 117 Kahaly GJ. et al. Mycophenolate plus methylprednisolone versus methylprednisolone alone in active, moderate-to-severe Gravesʼ orbitopathy (MINGO): a randomised, observer-masked, multicentre trial. Lancet Diabetes Endocrinol 2018; 6: 287-298
  • 118 Zang S, Ponto KA, Kahaly GJ. Clinical review: Intravenous glucocorticoids for Gravesʼ orbitopathy: efficacy and morbidity. J Clin Endocrinol Metab 2011; 96: 320-332
  • 119 Bartalena L. et al. Efficacy and safety of three different cumulative doses of intravenous methylprednisolone for moderate to severe and active Gravesʼ orbitopathy. J Clin Endocrinol Metab 2012; 97: 4454-4463
  • 120 Rajendram R. et al. Combined immunosuppression and radiotherapy in thyroid eye disease (CIRTED): a multicentre, 2 x 2 factorial, double-blind, randomised controlled trial. Lancet Diabetes Endocrinol 2018; 6: 299-309
  • 121 Kahaly G. et al. Ciclosporin and prednisone v. prednisone in treatment of Gravesʼ ophthalmopathy: a controlled, randomized and prospective study. Eur J Clin Invest 1986; 16: 415-422
  • 122 Prummel MF. et al. Prednisone and cyclosporine in the treatment of severe Gravesʼ ophthalmopathy. N Engl J Med 1989; 321: 1353-1359
  • 123 Stan MN. et al. Randomized controlled trial of rituximab in patients with Gravesʼ orbitopathy. J Clin Endocrinol Metab 2015; 100: 432-441
  • 124 Salvi M. et al. Efficacy of B-cell targeted therapy with rituximab in patients with active moderate to severe Gravesʼ orbitopathy: a randomized controlled study. J Clin Endocrinol Metab 2015; 100: 422-431
  • 125 Ceballos-Macias Jose J. et al. Tocilizumab in glucocorticoid-resistant graves orbitopathy. A case series report of a mexican population. Ann Endocrinol (Paris) 2020; 81: 78-82
  • 126 Perez-Moreiras JV. et al. Efficacy of Tocilizumab in Patients With Moderate-to-Severe Corticosteroid-Resistant Graves Orbitopathy: A Randomized Clinical Trial. Am J Ophthalmol 2018; 195: 181-190
  • 127 Perez-Moreiras JV. et al. Steroid-Resistant Gravesʼ Orbitopathy Treated with Tocilizumab in Real-World Clinical Practice: A 9-Year Single-Center Experience. J Clin Med 2021; 10: 706
  • 128 Marcocci C. et al. Selenium and the course of mild Gravesʼ orbitopathy. N Engl J Med 2011; 364: 1920-1931
  • 129 Mourits MP. et al. Radiotherapy for Gravesʼ orbitopathy: randomised placebo-controlled study. Lancet 2000; 355: 1505-1509
  • 130 Prummel MF. et al. A randomized controlled trial of orbital radiotherapy versus sham irradiation in patients with mild Gravesʼ ophthalmopathy. J Clin Endocrinol Metab 2004; 89: 15-20
  • 131 Marcocci C. et al. Orbital radiotherapy combined with high dose systemic glucocorticoids for Gravesʼ ophthalmopathy is more effective than radiotherapy alone: results of a prospective randomized study. J Endocrinol Invest 1991; 14: 853-860
  • 132 Bartalena L. et al. Orbital cobalt irradiation combined with systemic corticosteroids for Gravesʼ ophthalmopathy: comparison with systemic corticosteroids alone. J Clin Endocrinol Metab 1983; 56: 1139-1144
  • 133 Kim JW. et al. Efficacy of combined orbital radiation and systemic steroids in the management of Gravesʼ orbitopathy. Graefes Arch Clin Exp Ophthalmol 2016; 254: 991-998
  • 134 Oeverhaus M. et al. Combination Therapy of Intravenous Steroids and Orbital Irradiation is More Effective Than Intravenous Steroids Alone in Patients with Gravesʼ Orbitopathy. Horm Metab Res 2017; 49: 739-747
  • 135 Johnson KT. et al. A retrospective study on the efficacy of total absorbed orbital doses of 12, 16 and 20 Gy combined with systemic steroid treatment in patients with Gravesʼ orbitopathy. Graefes Arch Clin Exp Ophthalmol 2010; 248: 103-109
  • 136 Tanda ML, Bartalena L. Efficacy and safety of orbital radiotherapy for gravesʼ orbitopathy. J Clin Endocrinol Metab 2012; 97: 3857-3865
  • 137 Shams PN. et al. Reduced risk of compressive optic neuropathy using orbital radiotherapy in patients with active thyroid eye disease. Am J Ophthalmol 2014; 157: 1299-1305
  • 138 Gold KG. et al. Orbital Radiotherapy Combined With Corticosteroid Treatment for Thyroid Eye Disease-Compressive Optic Neuropathy. Ophthalmic Plast Reconstr Surg 2018; 34: 172-177
  • 139 Marquez SD. et al. Long-term results of irradiation for patients with progressive Gravesʼ ophthalmopathy. Int J Radiat Oncol Biol Phys 2001; 51: 766-774
  • 140 Wakelkamp IM. et al. Orbital irradiation for Gravesʼ ophthalmopathy: Is it safe? A long-term follow-up study. Ophthalmology 2004; 111: 1557-1562
  • 141 Lanzolla G. et al. Sirolimus as a second-line treatment for Gravesʼ orbitopathy. J Endocrinol Invest 2022; 45: 2171-2180
  • 142 Zhang M. et al. Rapamycin improves Gravesʼ orbitopathy by suppressing CD4+ cytotoxic T lymphocytes. JCI Insight 2023; 8
  • 143 Douglas RS. et al. Teprotumumab for the Treatment of Active Thyroid Eye Disease. N Engl J Med 2020; 382: 341-352
  • 144 Kahaly GJ. et al. Teprotumumab for patients with active thyroid eye disease: a pooled data analysis, subgroup analyses, and off-treatment follow-up results from two randomised, double-masked, placebo-controlled, multicentre trials. Lancet Diabetes Endocrinol 2021; 9: 360-372
  • 145 Smith TJ. et al. Teprotumumab for Thyroid-Associated Ophthalmopathy. N Engl J Med 2017; 376: 1748-1761
  • 146 Douglas RS. et al. Teprotumumab Efficacy, Safety, and Durability in Longer-Duration Thyroid Eye Disease and Re-treatment: OPTIC-X Study. Ophthalmology 2022; 129: 438-449
  • 147 Furmaniak J. et al. TSH receptor specific monoclonal autoantibody K1-70(TM) targeting of the TSH receptor in subjects with Gravesʼ disease and Gravesʼ orbitopathy-Results from a phase I clinical trial. Clin Endocrinol (Oxf) 2022; 96: 878-887
  • 148 Le Moli R. et al. Corticosteroid Pulse Therapy for Gravesʼ Ophthalmopathy Reduces the Relapse Rate of Gravesʼ Hyperthyroidism. Front Endocrinol (Lausanne) 2020; 11: 367
  • 149 Bartalena L. et al. The 2016 European Thyroid Association/European Group on Gravesʼ Orbitopathy Guidelines for the Management of Gravesʼ Orbitopathy. Eur Thyroid J 2016; 5: 9-26
  • 150 Bartalena L. et al. The 2021 European Group on Gravesʼ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Gravesʼ orbitopathy. Eur J Endocrinol 2021; 185: G43-G67
  • 151 Kahaly GJ. et al. 2018 European Thyroid Association Guideline for the Management of Gravesʼ Hyperthyroidism. Eur Thyroid J 2018; 7: 167-186
  • 152 Schott M. et al. Levels of autoantibodies against human TSH receptor predict relapse of hyperthyroidism in Gravesʼ disease. Horm Metab Res 2004; 36: 92-96
  • 153 Meyer Zu Horste M. et al. The Effect of Early Thyroidectomy on the Course of Active Gravesʼ Orbitopathy (GO): A Retrospective Case Study. Horm Metab Res 2016; 48: 433-439
  • 154 Lanzolla G. et al. Beneficial effect of low-dose radioiodine ablation for Gravesʼ orbitopathy: results of a retrospective study. J Endocrinol Invest 2021; 44: 2575-2579
  • 155 Menconi F. et al. Total thyroid ablation in Gravesʼ orbitopathy. J Endocrinol Invest 2015; 38: 809-815
  • 156 Menconi F. et al. Effects of total thyroid ablation versus near-total thyroidectomy alone on mild to moderate Gravesʼ orbitopathy treated with intravenous glucocorticoids. J Clin Endocrinol Metab 2007; 92: 1653-1658
  • 157 Oeverhaus M. et al. Radioiodine ablation of thyroid remnants in patients with Gravesʼ orbitopathy. J Nucl Med. 2022
  • 158 Traisk F. et al. Thyroid-associated ophthalmopathy after treatment for Gravesʼ hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab 2009; 94: 3700-3707
  • 159 Torring O. et al. Gravesʼ hyperthyroidism: treatment with antithyroid drugs, surgery, or radioiodine – a prospective, randomized study. Thyroid Study Group. J Clin Endocrinol Metab 1996; 81: 2986-2993
  • 160 Vannucchi G. et al. Prevention of Orbitopathy by Oral or Intravenous Steroid Prophylaxis in Short Duration Gravesʼ Disease Patients Undergoing Radioiodine Ablation: A Prospective Randomized Control Trial Study. Thyroid 2019; 29: 1828-1833
  • 161 Vannucchi G. et al. Gravesʼ orbitopathy activation after radioactive iodine therapy with and without steroid prophylaxis. J Clin Endocrinol Metab 2009; 94: 3381-3386
  • 162 Tanda ML, Lai A, Bartalena L. Relation between Gravesʼ orbitopathy and radioiodine therapy for hyperthyroidism: facts and unsolved questions. Clin Endocrinol (Oxf) 2008; 69: 845-847
  • 163 Dederichs B. et al. Radioiodine therapy of Gravesʼ hyperthyroidism in patients without pre-existing ophthalmopathy: can glucocorticoids prevent the development of new ophthalmopathy?. Exp Clin Endocrinol Diabetes 2006; 114: 366-370
  • 164 Bartalena L. et al. Epidemiology, Natural History, Risk Factors, and Prevention of Gravesʼ Orbitopathy. Front Endocrinol (Lausanne) 2020; 11: 615993
  • 165 Tanda ML. et al. Prevalence and natural history of Gravesʼ orbitopathy in a large series of patients with newly diagnosed gravesʼ hyperthyroidism seen at a single center. J Clin Endocrinol Metab 2013; 98: 1443-1449
  • 166 Perros P. et al. PREGO (presentation of Gravesʼ orbitopathy) study: changes in referral patterns to European Group On Gravesʼ Orbitopathy (EUGOGO) centres over the period from 2000 to 2012. Br J Ophthalmol 2015; 99: 1531-1535
  • 167 Schuh A. et al. Presentation of Gravesʼ orbitopathy within European Group On Gravesʼ Orbitopathy (EUGOGO) centres from 2012 to 2019 (PREGO III). Br J Ophthalmol. 2023
  • 168 Eckstein A, Schittkowski M, Esser J. Surgical treatment of Gravesʼ ophthalmopathy. Best Pract Res Clin Endocrinol Metab 2012; 26: 339-358
  • 169 Ebner R. et al. Treatment of thyroid associated ophthalmopathy with periocular injections of triamcinolone. Br J Ophthalmol 2004; 88: 1380-1386
  • 170 Lee SJ. et al. Treatment of upper eyelid retraction related to thyroid-associated ophthalmopathy using subconjunctival triamcinolone injections. Graefes Arch Clin Exp Ophthalmol 2013; 251: 261-270
  • 171 Duan M. et al. Triamcinolone acetonide injection in the treatment of upper eyelid retraction in Gravesʼ ophthalmopathy evaluated by 3.0 Tesla magnetic resonance imaging. Indian J Ophthalmol 2022; 70: 1736-1741
  • 172 Young SM. et al. Transconjunctival Triamcinolone Injection for Upper Lid Retraction in Thyroid Eye Disease-A New Injection Method. Ophthalmic Plast Reconstr Surg 2018; 34: 587-593
  • 173 Xu DD. et al. Long-term effect of triamcinolone acetonide in the treatment of upper lid retraction with thyroid associated ophthalmopathy. Int J Ophthalmol 2018; 11: 1290-1295
  • 174 Lee JM. et al. Subconjunctival injection of triamcinolone for the treatment of upper lid retraction associated with thyroid eye disease. J Craniofac Surg 2012; 23: 1755-1758
  • 175 Rana HS. et al. Ocular surface disease in thyroid eye disease: A narrative review. Ocul Surf 2022; 24: 67-73
  • 176 Ebner R. Botulinum toxin type A in upper lid retraction of Gravesʼ ophthalmopathy. J Clin Neuroophthalmol 1993; 13: 258-261
  • 177 Traisk F, Tallstedt L. Thyroid associated ophthalmopathy: botulinum toxin A in the treatment of upper eyelid retraction--a pilot study. Acta Ophthalmol Scand 2001; 79: 585-588
  • 178 Uddin JM, Davies PD. Treatment of upper eyelid retraction associated with thyroid eye disease with subconjunctival botulinum toxin injection. Ophthalmology 2002; 109: 1183-1187
  • 179 Dintelmann T, Sold J, Grehn F. Botulinum toxin injection-treatment of upper lid retraction in thyroid eye disease. Ophthalmologe 2005; 102: 247-250
  • 180 Wabbels B. Botulinumtoxin in Ophthalmology. Klin Monbl Augenheilkd 2019; 236: 825-836
  • 181 Olver JM. Botulinum toxin A treatment of overactive corrugator supercilii in thyroid eye disease. Br J Ophthalmol 1998; 82: 528-533
  • 182 Saeed P, Tavakoli Rad S, Bisschop P. Dysthyroid Optic Neuropathy. Ophthalmic Plast Reconstr Surg 2018; 34: S60-S67
  • 183 Gortz GE. et al. Hypoxia-Dependent HIF-1 Activation Impacts on Tissue Remodeling in Gravesʼ Ophthalmopathy-Implications for Smoking. J Clin Endocrinol Metab 2016; 101: 4834-4842
  • 184 Curro N. et al. Therapeutic outcomes of high-dose intravenous steroids in the treatment of dysthyroid optic neuropathy. Thyroid 2014; 24: 897-905
  • 185 Sears CM. et al. Teprotumumab for Dysthyroid Optic Neuropathy: Early Response to Therapy. Ophthalmic Plast Reconstr Surg 2021; 37: S157-S160
  • 186 Sears CM. et al. Early efficacy of teprotumumab for the treatment of dysthyroid optic neuropathy: A multicenter study. Am J Ophthalmol Case Rep 2021; 23: 101111
  • 187 Hwang CJ. et al. Bilateral dysthyroid compressive optic neuropathy responsive to teprotumumab. Eur J Ophthalmol 2022; 32: NP46-NP49
  • 188 Lopez MJ. et al. Visual Recovery of Dysthyroid Optic Neuropathy With Teprotumumab. J Neuroophthalmol 2022; 42: e491-e493
  • 189 Bartalena L. et al. Consensus statement of the European group on Gravesʼ orbitopathy (EUGOGO) on management of Gravesʼ orbitopathy. Thyroid 2008; 18: 333-346
  • 190 Rootman DB. Orbital decompression for thyroid eye disease. Surv Ophthalmol 2018; 63: 86-104
  • 191 Wu CH, Chang TC, Liao SL. Results and predictability of fat-removal orbital decompression for disfiguring graves exophthalmos in an Asian patient population. Am J Ophthalmol 2008; 145: 755-759
  • 192 Richter DF, Stoff A, Olivari N. Transpalpebral decompression of endocrine ophthalmopathy by intraorbital fat removal (Olivari technique): experience and progression after more than 3000 operations over 20 years. Plast Reconstr Surg 2007; 120: 109-123
  • 193 Boboridis KG, Gogakos A, Krassas GE. Orbital fat decompression for Gravesʼ orbitopathy: a literature review. Pediatr Endocrinol Rev 2010; 7: 222-226
  • 194 Eckstein A. et al. Surgical Treatment of Diplopia in Graves Orbitopathy Patients. Ophthalmic Plast Reconstr Surg 2018; 34: S75-S84
  • 195 Clarke L, Eckstein A. Eyelid Surgery. Wiersinga WM, Kahaly GJ (eds): Gravesʼ Orbitopathy: A Multidisciplinary Approach-Questions and Answers. Basel: Karger; 2017: 247-259
  • 196 Kahaly GJ. et al. Thyroid Stimulating Antibodies Are Highly Prevalent in Hashimotoʼs Disease. Eur J Clin Invest 1986; 16: 415-422
  • 197 Schmiedl A. Topographische Anatomie der Orbita. In: Welkoborsky HJ, Wiechens B, Hinni ML (Hrsg.): Orbita – Interdisziplinäres Management der Orbitaerkrankungen. Thieme Verl; S. 2016: 16-34
  • 198 Carrim ZI, Anderson IW, Kyle PM. Traumatic orbtial compartment syndrome: Importance of prompt recognition and management. Eur J Emerg 2007; 14: 174-176
  • 199 Welkoborsky HJ, Kraft T. Pathophysiologische Aspekte der Orbita. In: Welkoborsky HJ, Wiechens B, Hinni ML (Hrsg.): Orbita – Interdisziplinäres Management der Orbitaerkrankungen. Thieme Verl.; S. 2016: 36-43
  • 200 Prat MC, Braunstein AL, Dagi Glass LR, Kazim M. Orbital fat decompression for thyroid eye disease: retrospective case review and criteria for optimal case selection. Ophthal Plast Reconstr Surg 2015; 231: 215-218
  • 201 Olivari N. (2004) Endokrine Ophthalmopathie – Chirurgische Therapie. In: Olivari N: Praktische Plastische Chirurgie. Kaden Verlag; 2004: 239-254
  • 202 Lee KH, Jang SY, Lee SY, Yoon JL. Graded decompression of orbital fat and wall in patients with Gravesʼ orbitopathy. Korean J Ophthalmol 2014; 28: 1-11
  • 203 Choi SY, Kim WK, Lee JK. Surgical Outcomes of Balanced Deep Lateral and Medial Orbital Wall Decompression in Korean Population: Clinical and Computed Tomography-based Analysis. Korean J Ophthalmol 2016; 30: 85-91
  • 204 Rootman DB. Orbital decompression for thyroid eye disease. Surv Ophthalmol 2018; 63: 86-104
  • 205 Takahashi Y, Vaidya A. Secondary Effects of Orbital Decompression in Thyroid. Eye Disease: A Review. Semin Ophthalmol 2023; 38: 465-474
  • 206 Saussez S, Choufani G, Brutus JP, Cordonnier M. et al Lateral canthotomy: a simple and safe procedure for orbital haemorrhage secondary to endoscopic sinus surgery. Rhinology 1998; 36: 37-39
  • 207 Yung CW, Moorthy RS, Lindley D, Ringle M. et al. Efficacy of lateral canthotomy and cantholysis in orbital hemorrhage. Ophthal Plast Reconstr Surg 1994; 10: 137-141
  • 208 Anderson RL. Medial canthal tendon branches out. Arch Ophthalmol 1997; 95: 2051-2052
  • 209 Soare S, Foletti JM, Gallucci A, Collet C, Guyot L. et al. Update on orbital decompression as emergency treatment of traumatic blindness. J Craniomaxillofac Surg 2015; 43: 1000-1003
  • 210 Lima V, Burt B, Leibovitch I, Prabhakaran V, Goldberg RA. et al. Orbital compartment syndrome: the ophthalmic surgical emergency. Surv Ophthalmol 2009; 54: 441-445
  • 211 Berhouma M, Jacquesson T, Abouaf L, Vighetto A. et al. Endoscopic endonasal optic nerve and orbital apex decompression for nontraumatic optic neuropathy: surgical nuances and review of the literature. Neurosurg Focus 2014; 37: E19
  • 212 Murillo Limongi R, Feijó ED, MLopes E, Silva MR, Akaishi P. et al. Orbital Bone Decompression for Non-Thyroid Eye Disease Proptosis. Ophthalmic Plast Reconstr Surg 2020; 36: 13-16
  • 213 Daser A, Mattheis S, Stähr K, Lang S. et al. Bony Orbital Decompression in Patients with High Myopia and Pseudoexophthalmos. Klin Monbl Augenheilkd 2021; 238: 41-47
  • 214 Küchlin S, Gruber M, Reich M, Joachimsen L. et al. Orbital decompression in Gravesʼ orbitopathy-Experiences and results. Ophthalmologe 2021; 118: 345-355
  • 215 European Group on Gravesʼ Orbitopathy (EUGOGO). Mourits MP, Bijl H, Altea MA, Baldeschi L, Boboridis L. et al. Outcome of orbital decompression for disfiguring proptosis in patients with Gravesʼ orbitopathy using various surgical procedures. Br J Ophthalmol 2009; 93: 1518-1523
  • 216 Bartalena L, Baldeschi L, Boboridis K, Eckstein A. et al. on behalf of the European Group on Gravesʼ Orbitopathy (EUGOGO): The 2016 European Thyroid Association/European Group on Gravesʼ Orbitopathy Guidelines for the Management of Gravesʼ Orbitopathy. Eur Thyroid J 2016; 5: 9-26
  • 217 Bartalena L, Kahaly GJ, Baldeschi L, Dayan CM. et al. EUGOGO †: The 2021 European Group on Gravesʼ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Gravesʼ orbitopathy. Eur J Endocrinol 2021; 185: G43-G67
  • 218 Parrilla C, Mele DA, Gelli S, Zelano L. et al. Multidisciplinary approach to orbital decompression. A review. Acta Otorhinolaryngol Ital 2021; 41: S90-S101 DOI: 10.14639/0392-100X-suppl.1-41-2021-09..
  • 219 Cascone P, Rinna C, Reale G, Calvani F, Iannetti G. Compression and stretching in Graves orbitopathy: emergency orbital decompression techniques. J Craniofac Surg 2012; 23: 1430-1433
  • 220 Bingham CM, Harris MA, Vidor IA, Rosen CL. et al. Transcranial orbital decompression for progressive compressive optic neuropathy after 3-wall decompression in severe gravesʼ orbitopathy. Ophthalmic Plast Reconstr Surg 2014; 30: 215-218
  • 221 Sowerby LJ, Rajakumar C, Allen L, Rotenberg BW. Urgent endoscopic orbital decompression for vision deterioration in dysthyroid optic neuropathy. Eur Ann Otorhinolaryngol Head Neck Dis 2019; 136: S49-S52
  • 222 Choi SW, Lee JY, Lew H. Customized Orbital Decompression Surgery Combined with Eyelid Surgery or Strabismus Surgery in Mild to Moderate Thyroid-associated Ophthalmopathy. Korean J Ophthalmol 2016; 30: 1-9
  • 223 Poonam NS, Agarkar S. “Single-stage orbital decompression, strabismus and eyelid surgery in moderate to severe thyroid associated orbitopathy”. Orbit. 2022; 41: 815
  • 224 Boboridis KG, Uddin J, Mikropoulos DG, Bunce C. et al. Critical Appraisal on Orbital Decompression for Thyroid Eye Disease: A Systematic Review and Literature Search. Adv Ther 2015; 32: 595-611
  • 225 Cruz AAV, Equiterio BSN, Cunha BSA, Caetano FAB, Souza RL. Deep lateral orbital decompression for Graves orbitopathy: a systematic review. Int Ophthalmol 2021; 41: 1929-1947
  • 226 Boboridis KG, Bunce C. Surgical orbital decompression for thyroid eye disease. Cochrane Database Syst Rev 2011; 12: CD007630
  • 227 Bleier BS, Lefebvre DR, Freitag SK. Endoscopic orbital floor decompression with preservation of the inferomedial strut. Int Forum Allergy Rhinol 2014; 4: 82-84
  • 228 Ference EH, Sindwani R, Tan BK, Chandra RK. et al. Open versus endoscopic medial orbital decompression: Utilization, cost, and operating room time. Am J Rhinol Allergy 2016; 30: 360-366
  • 229 Tsetsos N, Daskalakis D, Tzakri D, Blioskas S. et al Endoscopic transnasal orbital decompression for Graves. Rhinology 2020; 58: 2-9
  • 230 Welkoborsky HJ, Plontke S. Chirurgische Zugangswege zur Orbita. HNO . 2018; 66: 812-826
  • 231 Welkoborsky HJ, Möbius H, Bauer L, Wiechens B. Traumatische Optikusneuropathie. HNO. 2011; 59: 997-1004
  • 232 Welkoborsky HJ, Küstermeyer J, Steinke KV, Pähler A, Deichmüller C. Endoscopic Optic Nerve Decompression: Indications, Technique, Results. Curr Otolaryngol Rep 2019; DOI: 10.1007/s40136-019-00235-.
  • 233 Lu JE, Bergman M, Burnstine MA. Technique for modified transantral orbital decompression for improved cosmesis in stable thyroid eye disease. Int J Oral Maxillofac Surg 2021; 50: 1440-1442
  • 234 Ong AA, DeVictor S, Vincent AG. et al Bony Orbital Surgery for Gravesʼ Ophthalmopathy. Facial Plast Surg 2021; 37: 692-697
  • 235 Jamshidian-Tehrani M, Nekoozadeh S, Alami E. et al Color Doppler imaging of orbital vasculature before and after orbital decompression in thyroid eye disease. Orbit. 2019; 38: 173-179
  • 236 de Sousa PT, de Almeida Leite C, Kuniyoshi CH. et al. A randomized comparative study of inferomedial vs. balanced orbital decompression. Analysis of changes in orbital volume, eyelid parameters, and eyeball position. Eye (Lond) 2022; 36: 547-554
  • 237 Ye Y, Hu F, Ji Y, Wang R. et al The outcomes of endoscopic orbital decompression combined with fat decompression for thyroid-associated ophthalmopathy. BMC Ophthalmol 2023; 23: 217
  • 238 Jurek-Matusiak O, Brożek-Mądry E, Jastrzębska H, Krzeski A. Orbital decompression for thyroid eye disease: surgical treatment outcomes in endocrinological assessment. Endokrynol Pol 2021; 72: 609-617
  • 239 Woods Robbie SR, Pilson Q, Kharytaniuk N. et al Outcomes of endoscopic orbital decompression for gravesʼ ophthalmopathy. Ir J Med Sci 2020; 189: 177-183
  • 240 Valente L, Riccardo T, Stefano P. et al. Effectiveness of orbital decompression for endocrine orbitopathy and impact on quality of life: A retrospective study. J Craniomaxillofac Surg 2021; 49: 867-874
  • 241 Nair Archana A, Ediriwickrema LS, Dolman PJ. et al. Predictive Modeling of New-Onset Postoperative Diplopia Following Orbital Decompression for Thyroid Eye Disease. Ophthalmic Plast Reconstr Surg 2022; 38: 551-557
  • 242 Leong SC, Karkos PD, Macewen CJ, White PS. A systematic review of outcomes following surgical decompression for dysthyroid orbitopathy. Laryngoscope 2009; 119: 1106-1115
  • 243 Kauh CY, Gupta S, Douglas RS. et al Compressive Optic Neuropathy and Repeat Orbital Decompression: A Case Series. Ophthal Plast Reconstr Surg 2015; 31: 385-390 DOI: 10.1097/IOP.0000000000000356.
  • 244 Tang Dennis M, Goli R, Higgins TS. et al. Medical Malpractice Trends in Dacryocystorhinostomy and Orbital Decompression. Am J Rhinol Allergy 2022; 36: 835-840
  • 245 Takahashi Y, Vaidya A, Kakizaki H. Changes in Eyelid Pressure and Dry Eye Status after Orbital Decompression in Thyroid Eye Disease. J Clin Med 2021; 10: 3687
  • 246 Harris GJ. Idiopathic orbital inflammation: a pathogenetic construct and treatment strategy: The 2005 ASOPRS Foundation Lecture. Ophthal Plast Reconstr Surg 2006; 22: 79-86
  • 247 Mombaerts I. et al. What is orbital pseudotumor?. Surv Ophthalmol 1996; 41: 66-78
  • 248 Bijlsma WR. et al. Identification of infectious entities in idiopathic orbital inflammation biopsies. Br J Ophthalmol 2013; 97: 664-665
  • 249 Jin R. et al. Quantification of Epstein-Barr virus DNA in patients with idiopathic orbital inflammatory pseudotumor. PLoS One 2013; 8: e50812
  • 250 Lutt JR. et al. Orbital inflammatory disease. Semin Arthritis Rheum 2008; 37: 207-222
  • 251 Ismailova DS. et al. Clinical features of different orbital manifestations of granulomatosis with polyangiitis. Graefes Arch Clin Exp Ophthalmol 2018; 256: 1751-1756
  • 252 Conti ML. et al. Orbitopalpebral and ocular sarcoidosis: what does the ophthalmologist need to know. Br J Ophthalmol 2022; 106: 156-164
  • 253 Kang MS. et al. Clinical Features of Ocular Motility in Idiopathic Orbital Myositis. J Clin Med 2020; 9: 1165
  • 254 McNab AA. Orbital Myositis: A Comprehensive Review and Reclassification. Ophthalmic Plast Reconstr Surg 2020; 36: 109-117
  • 255 Lee MJ. et al. Non-specific orbital inflammation: Current understanding and unmet needs. Prog Retin Eye Res 2021; 81: 100885
  • 256 Umehara H. et al. The 2020 revised comprehensive diagnostic (RCD) criteria for IgG4-RD. Mod Rheumatol 2021; 31: 529-533
  • 257 Mombaerts I, Rose GE, Garrity JA. Orbital inflammation: Biopsy first. Surv Ophthalmol 2016; 61: 664-669
  • 258 Lee MJ. et al. Radiologic imaging shows variable accuracy in diagnosing orbital inflammatory disease and assessing its activity. Sci Rep 2020; 10: 21875
  • 259 Jacobs D, Galetta S. Diagnosis and management of orbital pseudotumor. Curr Opin Ophthalmol 2002; 13: 347-351
  • 260 Dagi Glass LR, Freitag SK. Orbital inflammation: Corticosteroids first. Surv Ophthalmol 2016; 61: 670-673
  • 261 Mombaerts I. et al. Diagnosis of orbital mass lesions: clinical, radiological, and pathological recommendations. Surv Ophthalmol 2019; 64: 741-756
  • 262 Bijlsma WR, Elbert NJ, Kalmann R. The role of biopsy in diagnosing patients suspected of idiopathic orbital inflammation. Curr Eye Res 2012; 37: 251-253
  • 263 Bijlsma WR, Kalmann R. Idiopathic orbital inflammation and Graves ophthalmopathy. Arch Ophthalmol 2010; 128: 131-132
  • 264 Mombaerts I. et al. Consensus on Diagnostic Criteria of Idiopathic Orbital Inflammation Using a Modified Delphi Approach. JAMA Ophthalmol 2017; 135: 769-776
  • 265 Smith JR, Rosenbaum JT. A role for methotrexate in the management of non-infectious orbital inflammatory disease. Br J Ophthalmol 2001; 85: 1220-1224
  • 266 Hatton MP, Rubin PA, Foster CS. Successful treatment of idiopathic orbital inflammation with mycophenolate mofetil. Am J Ophthalmol 2005; 140: 916-918
  • 267 Patel AK, Hoch S, Shindler KS. Mycophenolate mofetil treatment of steroid-resistant idiopathic sclerosing orbital inflammation. Clin Experiment Ophthalmol 2011; 39: 912-913
  • 268 Miquel T. et al. Successful treatment of idiopathic orbital inflammation with infliximab: an alternative to conventional steroid-sparing agents. Ophthal Plast Reconstr Surg 2008; 24: 415-417
  • 269 Pakdel F, Haghighi A, Pirmarzdashti N. Disease modifying drugs in idiopathic sclerosing orbital inflammatory syndrome. Orbit 2021; 1-10
  • 270 Schafranski MD. Idiopathic orbital inflammatory disease successfully treated with rituximab. Clin Rheumatol 2009; 28: 225-226
  • 271 Artaechevarria Artieda J, Tapias Elias I. Tocilizumab in a Case of Refractory Idiopathic Orbital Inflammation: 6-Year Follow-Up Outcomes. Case Rep Ophthalmol 2020; 11: 299-305
  • 272 Ng CC, Sy A, Cunningham ET. Rituximab for treatment of non-infectious and non-malignant orbital inflammatory disease. J Ophthalmic Inflamm Infect 2021; 11: 24
  • 273 Fionda B. et al. The Role of Radiotherapy in Orbital Pseudotumor: A Systematic Review of Literature. Ocul Immunol Inflamm 2021; 1-6
  • 274 Kim RY, Roth RE. Radiotherapy of orbital pseudotumor. Radiology 1978; 127: 507-509
  • 275 Matthiesen C. et al. The efficacy of radiotherapy in the treatment of orbital pseudotumor. Int J Radiat Oncol Biol Phys 2011; 79: 1496-1502
  • 276 Garrity JA. Not a Tumor-Nonspecific Orbital Inflammation. J Neurol Surg B Skull Base 2021; 82: 96-99
  • 277 Hamano H. et al. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N Engl J Med 2001; 344: 732-738
  • 278 Cheuk W, Yuen HK, Chan JK. Chronic sclerosing dacryoadenitis: part of the spectrum of IgG4-related Sclerosing disease?. Am J Surg Pathol 2007; 31: 643-645
  • 279 Detiger SE. et al. The treatment outcomes in IgG4-related orbital disease: a systematic review of the literature. Acta Ophthalmol 2019; 97: 451-459
  • 280 Fernandez-Codina A. et al. IgG4-Related Disease: Results From a Multicenter Spanish Registry. Medicine (Baltimore) 2015; 94: e1275
  • 281 Woo YJ, Kim JW, Yoon JS. Clinical implications of serum IgG4 levels in patients with IgG4-related ophthalmic disease. Br J Ophthalmol 2017; 101: 256-260
  • 282 Kleger A. et al. IgG4-related autoimmune diseases: Polymorphous presentation complicates diagnosis and treatment. Dtsch Arztebl Int 2015; 112: 128-135
  • 283 Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 2004; 4: 583-594
  • 284 Al-Ghazzawi K. et al. Novel Insights into Pathophysiology of Orbital Inflammatory Diseases and Progression to Orbital Lymphoma by Pathway Enrichment Analysis. Life (Basel) 2022; 12: 12
  • 285 Andrew NH. et al. An analysis of IgG4-related disease (IgG4-RD) among idiopathic orbital inflammations and benign lymphoid hyperplasias using two consensus-based diagnostic criteria for IgG4-RD. Br J Ophthalmol 2015; 99: 376-381
  • 286 Aryasit O. et al. IgG4-related disease in patients with idiopathic orbital inflammation. BMC Ophthalmol 2021; 21: 356
  • 287 Al-Ghazzawi K. et al. Evaluation of Orbital Lymphoproliferative and Inflammatory Disorders by Gene Expression Analysis. Int J Mol Sci 2022; 23: 8609
  • 288 Lee MJ. et al. Non-specific orbital inflammation: Current understanding and unmet needs. Prog Retin Eye Res 2021; 81: 100885
  • 289 Umehara H. et al. The 2020 revised comprehensive diagnostic (RCD) criteria for IgG4-RD. Mod Rheumatol 2021; 31: 529-533
  • 290 Gupta L. et al. Diffusion-Weighted Imaging of the Orbit: A Case Series and Systematic Review. Ophthalmic Plast Reconstr Surg 2023; 39: 407-418
  • 291 Lai KKH. et al. Upper Cranial Nerve Involvement and Immunoglobulin G4-Related Optic Neuropathy. Ophthalmology 2020; 127: 699-703
  • 292 McNab AA, McKelvie P. IgG4-Related Ophthalmic Disease. Part II: Clinical Aspects. Ophthalmic Plast Reconstr Surg 2015; 31: 167-178
  • 293 Zen Y, Nakanuma Y. IgG4-related disease: a cross-sectional study of 114 cases. Am J Surg Pathol 2010; 34: 1812-1819
  • 294 Chen J. et al. Clinical features and outcomes of IgG4-related idiopathic orbital inflammatory disease: from a large southern China-based cohort. Eye (Lond) 2021; 35: 1248-1255
  • 295 Yoshifuji H, Umehara H. Glucocorticoids in the treatment of IgG4-related disease-Prospects for new international treatment guidelines. Mod Rheumatol 2023; 33: 252-257
  • 296 Iaccarino L. et al. IgG4-related diseases: state of the art on clinical practice guidelines. RMD Open 2018; 4: e000787
  • 297 Tanaka A. et al. Nationwide survey for primary sclerosing cholangitis and IgG4-related sclerosing cholangitis in Japan. J Hepatobiliary Pancreat Sci 2014; 21: 43-50
  • 298 Kubota T. et al. Long-term outcomes of ocular adnexal lesions in IgG4-related ophthalmic disease. Br J Ophthalmol 2020; 104: 345-349
  • 299 Ng CC, Sy A, Cunningham ET. Rituximab for treatment of non-infectious and non-malignant orbital inflammatory disease. J Ophthalmic Inflamm Infect 2021; 11: 24
  • 300 Sun H. et al. Successful remission induction of IgG4-related ophthalmic disease by obinutuzumab therapy: a retrospective study of 8 patients. Eye (Lond). 2023
  • 301 Sabol RA. et al. Image-Guided Intensity-Modulated Radiation Therapy for IgG4-Related Ophthalmic Disease. Case Rep Ophthalmol Med 2020; 2020: 8873078
  • 302 Nishida K. et al. Ocular adnexal marginal zone lymphoma arising in a patient with IgG4-related ophthalmic disease. Mod Rheumatol 2019; 29: 383-387
  • 303 Cerhan JR, Habermann TM. Epidemiology of Marginal Zone Lymphoma. Ann Lymphoma 2021; 5: 1
  • 304 Karim F, Clahsen-van Groningen M, van Laar JA. AA Amyloidosis and IgG4-Related Disease. N Engl J Med 2017; 376: 599-600
  • 305 Junek ML. et al. Ocular manifestations of ANCA-associated vasculitis. Rheumatology (Oxford) 2023; 62: 2517-2524
  • 306 Krasselt ML, Holle JU. ANCA-associated vasculitis. Inn Med (Heidelb) 2022; 63: 947-960
  • 307 Holle JU. et al. Prospective long-term follow-up of patients with localised Wegenerʼs granulomatosis: does it occur as persistent disease stage?. Ann Rheum Dis 2010; 69: 1934-1939
  • 308 Rosenbaum JT. et al. Orbital pseudotumor can be a localized form of granulomatosis with polyangiitis as revealed by gene expression profiling. Exp Mol Pathol 2015; 99: 271-278
  • 309 Holle JU. et al. Improved outcome in 445 patients with Wegenerʼs granulomatosis in a German vasculitis center over four decades. Arthritis Rheum 2011; 63: 257-266
  • 310 Ungprasert P. et al. Clinical characteristics of inflammatory ocular disease in anti-neutrophil cytoplasmic antibody associated vasculitis: a retrospective cohort study. Rheumatology (Oxford) 2017; 56: 1763-1770
  • 311 Woo TL. et al. Australasian orbital and adnexal Wegenerʼs granulomatosis. Ophthalmology 2001; 108: 1535-1543
  • 312 Holle JU. et al. Orbital masses in granulomatosis with polyangiitis are associated with a refractory course and a high burden of local damage. Rheumatology (Oxford) 2013; 52: 875-882
  • 313 Provenzale JM, Allen NB. Wegener granulomatosis: CT and MR findings. AJNR Am J Neuroradiol 1996; 17: 785-792
  • 314 Robson JC. et al. 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology Classification Criteria for Granulomatosis With Polyangiitis. Arthritis Rheumatol 2022; 74: 393-399
  • 315 Chung SA. et al. 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the Management of Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol 2021; 73: 1366-1383
  • 316 Schirmer JH. et al. Systematic literature review informing the 2022 update of the EULAR recommendations for the management of ANCA-associated vasculitis (AAV): part 1-treatment of granulomatosis with polyangiitis and microscopic polyangiitis. RMD Open 2023; 9: e003083
  • 317 Hellmich B. et al. EULAR recommendations for the management of ANCA-associated vasculitis: 2022 update. Ann Rheum Dis 2023; 83: 30-47
  • 318 Jayne DRW. et al. Avacopan for the Treatment of ANCA-Associated Vasculitis. N Engl J Med 2021; 384: 599-609
  • 319 Durel CA. et al. Orbital mass in ANCA-associated vasculitides: data on clinical, biological, radiological and histological presentation, therapeutic management, and outcome from 59 patients. Rheumatology (Oxford) 2019; 58: 1565-1573
  • 320 Perez-Jacoiste Asin MA. et al. Ocular involvement in granulomatosis with polyangiitis: A single-center cohort study on 63 patients. Autoimmun Rev 2019; 18: 493-500
  • 321 Joshi L. et al. Long-term Outcomes of Rituximab Therapy in Ocular Granulomatosis with Polyangiitis: Impact on Localized and Nonlocalized Disease. Ophthalmology 2015; 122: 1262-1268
  • 322 Nagaoka T. et al. Wegener granulomatosis-associated optic perineural hypertrophy and optic neuropathy. Intern Med 2012; 51: 227-228
  • 323 Fishman JM, Slovick A, East CA. Wegenerʼs granulomatosis of the orbit: two cases requiring endoscopic surgical decompression. J Laryngol Otol 2008; 122: 1257-1259
  • 324 Shifera AS. et al. Identification of microbial agents in tissue specimens of ocular and periocular sarcoidosis using a metagenomics approach. F1000Res 2021; 10: 820
  • 325 Pleyer U, Gundlach E. Sarcoidose. in Entzündliche Augenerkrankungen. Springer Verlag, 2. Auflage 2021; 671-684
  • 326 Mochizuki M. et al. Revised criteria of International Workshop on Ocular Sarcoidosis (IWOS) for the diagnosis of ocular sarcoidosis. Br J Ophthalmol 2019; 103: 1418-1422
  • 327 Ruger A. et al. Orbitofacial manifestation of sarcoidosis. Ophthalmologie 2023; 120: 314-317
  • 328 Huang S. et al. Bilateral lacrimal gland disease: clinical features and outcomes. Eye (Lond) 2022; 36: 2163-2171
  • 329 Vahdani K, Rose GE. Sarcoid Orbital Myopathy: Clinical Presentation and Outcomes. Ophthalmic Plast Reconstr Surg 2020; 36: 61-66
  • 330 Prasse A. The Diagnosis, Differential Diagnosis, and Treatment of Sarcoidosis. Dtsch Arztebl Int 2016; 113: 565-574
  • 331 Kisser U, Heichel J, Glien A. Rare Diseases of the Orbit. Laryngorhinootologie 2021; 100: S1-S79
  • 332 Pasadhika S, Rosenbaum JT. Ocular Sarcoidosis. Clin Chest Med 2015; 36: 669-683
  • 333 Marwaha G, Macklis R, Singh AD. Radiation therapy: orbital tumors. Dev Ophthalmol 2013; 52: 94-101
  • 334 Skinner HD, Garden AS, Rosenthal DI, Kian Ang K. et al. Outcomes of malignant tumors of the lacrimal apparatus. Cancer 2011; 117: 2801-2810
  • 335 Vahdani K, Gupta T, Verity DH, Rose GE. Extension of Masses Involving the Lacrimal Sac to Above the Medial Canthal Tendon. Ophthalmic Plast Reconstr Surg 2021; 37: 556-559
  • 336 Alam MS, Mukherjee B, Krishnakumar S. Clinical profile and management outcomes of lacrimal drainage system malignancies. Orbit. 2022; 41: 429-436
  • 337 Marinho A, Delgado Alves J, Fortuna J, Faria R. et al. Biological therapy in systemic lupus erythematosus, antiphospholipid syndrome, and Sjögrenʼs syndrome: evidence-and practice-based guidance. Front Immunol 2023; 14: 1117699 DOI: 10.3389/fimmu.2023.1117699.eCollection2023.
  • 338 Flores Balverdi J, Baenas DF, Riscanevo NC, Sánchez AV. et al. IgG4-related orbital disease. Arch Soc Esp Oftalmol (Engl Ed) 2018; 93: 494-496
  • 339 Chawla B, Kashyap S, Sen S, Bajaj MS. et al. Clinicopathologic review of epithelial tumors of the lacrimal gland. Ophthal Plast Reconstr Surg 2013; 29: 440-445
  • 340 Gupta A, Khandelwal A. Lacrimal gland pleomorphic adenoma: an inconceivable diagnosis in a child. BMJ Case Rep 2013; 10 DOI: 10.1136/bcr-2013-009138.
  • 341 OʼRourke MA, McKelvie PA, Angel CM, McNab AA. Lacrimal gland pleomorphic adenoma with extensive necrosis. Orbit. 2022; 41: 378-381
  • 342 Sharma AK, Sharma R, Misra S, Misra N. et al. Pleomorphic Adenoma of the Orbital Ectopic Lacrimal Gland: An Extremely Rare Occurrence with Review of Literature. Neurol India 2022; 70: 296-299
  • 343 Von Holstein SL, Fehr A, Persson M, Nickelsen M. et al. Lacrimal gland pleomorphic adenoma and carcinoma ex pleomorphic adenoma: genomic profiles, gene fusions, and clinical characteristics. Ophthalmology 2014; 121: 1125-1133
  • 344 de Lima-Souza RA, Rodrigues NM, Scarini JF, Silva MFS. et al. Metabolic alterations in carcinoma ex pleomorphic adenoma development of lacrimal glands. Int Ophthalmol 2022; 42: 1101-1109
  • 345 Kisser U, Heichel J, Glien A. Seltene Erkrankungen der Orbita – Rare Diseases of the Orbit. Laryngo-Rhino-Otol 2021; 100: S1-S68
  • 346 Schwarcz RM, Coupland SE, Finger PT. Cancer of the orbit and adnexa. Am J Clin Oncol 2013; 36: 197-205
  • 347 Van Rooij N, Newman AR, Vyas V, Sullivan TJ. A rare case of epithelial-myoepithelial carcinoma arising ex pleomorphic adenoma of the lacrimal gland: case report and review of the literature. Orbit. 2022; 41: 805-809
  • 348 Singh S, Ali MJ. Primary Malignant Epithelial Tumors of the Lacrimal Drainage System: A Major Review. Orbit. 2021; 40: 179-192
  • 349 Von Holstein SL, Fehr A, Persson M, Therkildsen MH. et al. Adenoid cystic carcinoma of the lacrimal gland: MYB gene activation, genomic imbalances, and clinical characteristics. Ophthalmology 2013; 120: 2130-2138
  • 350 Emerick C, Mariano FV, Vargas PA, Nör JE. et al. Adenoid Cystic Carcinoma from the salivary and lacrimal glands and the breast: Different clinical outcomes to the same tumor. Crit Rev Oncol Hematol 2022; 179: 103792 DOI: 10.1016/j.critrevonc.2022.103792.
  • 351 Mulay K, Puthyapurayil FM, Mohammad JA, Hasnat Ali M. et al. Adenoid cystic carcinoma of the lacrimal gland: role of nuclear survivin (BIRC5) as a prognostic marker. Histopathology 2013; 62: 840-846
  • 352 Wang Y, Tian Y, Lin J, Chen L. et al. Assessment of p16 expression and HPV infection in adenoid cystic carcinoma of the lacrimal gland. Mol Vis 2018; 24: 143-152
  • 353 Duarte AF, Alpuim Costa D, Caçador N, Boavida AM. et al. Adenoid cystic carcinoma of the palpebral lobe of the lacrimal gland-case report and literature review. Orbit. 2022; 41: 605-610
  • 354 Gensheimer MF, Rainey D, Douglas JG, Liao JJ. et al. Neutron radiotherapy for adenoid cystic carcinoma of the lacrimal gland. Ophthal Plast Reconstr Surg 2013; 29: 256-260
  • 355 Mansi RA, Morris B, Fulcher T, McDermott JH. Metastatic HER2 lacrimal/salivary gland duct adenocarcinoma. BMJ Case Rep 2023; 16: e253928
  • 356 Boecker W, Stenman G, Loening T, Andersson MK. et al. K5/K14-positive cells contribute to salivary gland-like breast tumors with myoepthelial differentiation. Mod Pathol 2013; 26: 1086-1100
  • 357 Rasmussen PK. Diffuse large B-cell lymphoma and mantle cell lymphoma of the ocular adnexal region, and lymphoma of the lacrimal gland: an investigation of clinical and histopatrhological features. Acta Ophthalmol 2013; 91 Thesis 5 1-27
  • 358 Hother C, Rasmussen PK, Joshi T, Reker D. et al. MicroRNA profiling in ocular adnexal lymphoma: a role for disease. Invest Ophthalmol Vis Sci 2013; 54: 5169-5175
  • 359 Tanweer F, Mahkamova K, Harkness P. Nasolacrimal duct tumours in the era of endoscopic dacryocystorhinostomy: literature review. J Laryngol Otol 2013; 127: 670-675
  • 360 Demirci H, Kauh CY, Rajaii F, Elner VM. Intralesional Rituximab for the Treatment of Recurrent Ocular Adnexal Lymphoma. Ophthalmic Plast Reconstr Surg 2017; 33: S70-S71 DOI: 10.1097/IOP.0000000000000666..
  • 361 Diab MM, Ali MJ, Mohammed KK. Clinico-radiologic characteristics of lacrimal sac area swellings misdiagnosed as dacryocystocele or mucocele. Eur J Ophthalmol 2023; 33: 152-160
  • 362 Tanaboonyawat S, Idowu OO, Copperman TS, Vagefi MR. et al. Dacryops-A review. Orbit 2020; 39: 128-134
  • 363 Eweiss AZ, Lund VJ, Jay A, Rose G. Transitional cell tumours of the lacrimal drainage apparatus. Rhinology 2013; 51: 349-354
  • 364 Lieb WE. Idiopathic orbital inflammation. Ophthalmologe 2021; 118: 777-786
  • 365 Derakhshandeh R, Dimopoulos YP, Goodglick TA, Chanine J. et al. Single Institutional Experience on Orbital Inflammatory Pseudotumor: Diagnostic and Management Challenge. Balkan Med J 2021; 38: 239-243
  • 366 Mombaerts I, Rose GE, Garrity JA. Orbital inflammation: Biopsy first. Surv Ophthalmol 2016; 61: 664-669
  • 367 Min HK, Lee YS, Yang SW, Lee J. et al. Clinical outcomes and pathological characteristics of immunoglobulin G4-related ophthalmic disease versus orbital inflammatory pseudotumor. Korean J Intern Med 2019; 34: 220-226
  • 368 Kisser U, Heichel J, Glien A. Seltene Erkrankungen der Orbita – Rare Diseases of the Orbit. Laryngo-Rhino-Otol 2021; 100: S1-S68
  • 369 Tawfik HA, Dutton JJ. Orbital Vascular Anomalies: A Nomenclatorial, Etiological, and Nosologic Conundrum. Ophthalmic Plast Reconstr Surg 2022; 38: 108-121
  • 370 Cunnane MB. Hugh David Curtin: Imaging of orbital disorders. Handb Clin Neurol 2016; 135: 659-672
  • 371 Thavara BD, Rajagopalawarrier B, Balakrishnan S, Kindangan GS. A Case of Adult Orbital Intraconal Lymphangioma. Asian J Neurosurg 2020; 15: 168-171
  • 372 Zobel MJ, Nowicki D, Gomez G, Lee J. et al. Management of cervicofacial lymphatic malformations requires a multidisciplinary approach. J Pediatr Surg 2021; 56: 1062-1067
  • 373 Kunimoto K, Yamamoto Y, Jinnin M. ISSVA Classification of Vascular Anomalies and Molecular Biology. Int J Mol Sci 2022; 23: 235
  • 374 Abdelsalam A, Ramsay IA, Ehiemua U, Thompson JW. et al. Thrombosed orbital varix of the inferior ophthalmic vein: A rare cause of acute unilateral proptosis. Surg Neurol Int 2023; 14: 186
  • 375 Hsu C-H, Hsu W-M. Cavernous Hemangioma of the Orbit: 42 Patients. J Exp Clin Med Clinical Medicine 2011; 3: 278-282
  • 376 Wassef M, Blei F, Adams D. et al Vascular Anomalies Classification: Recommendations from the International Society for the Study of Vascular Anomalies (ISSVA). Pediatrics 2015; 136: e203-e214
  • 377 Grantzow R, Schmittenbecher P, Höger P. et al. S2k-Leitlinie 006/100: Infantile Hämangiome im Säuglings-und Kleinkindesalter. AWMF online. 2020
  • 378 Durrani AF, Zhou Y, Musch DC, Demirci H. Treatment of Choroidal Hemangioma with Photodynamic Therapy and Bevacizumab. Ophthalmol Retina 2022; 6: 533-535
  • 379 Kinzinger MR, Strong EB, Bernard J, Steele TO. Intralesional Bevacizumab for the Treatment of Recurrent Sinonasal Hemangioma. Ann Otol Rhinol Laryngol 2018; 127: 969-973
  • 380 Mahore A, Ramdasi R, Chagla A, Tikeykar V. Intraconal optic sheath schwannoma: report of two cases. Br J Neurosurg 2019; 33: 101-103
  • 381 Braich PS, Donaldson JC, Bajaj GS, Bearden WH. Isolated Neurofibroma of the Orbit: Case Report and Literature Review. Ophthalmic Plast Reconstr Surg 2018; 34: 1-6
  • 382 Cheng SF, Chen YI, Chang CY, Peng Y. et al Malignant peripheral nerve sheath tumor of the orbit: malignant transformation from neurofibroma without neurofibromatosis. Ophthalmic Plast Reconstr Surg 2008; 24: 413-415
  • 383 Kansy K, Juergens P, Krol Z, Paulussen M. et al. Odontogenic Myxoma: Diagnostic and Therapeutic Challenges in Paediatric and Adult Patients – A Case Series and Review of the Literature. J Craniomaxillofac Surg 2012; 40: 271-276
  • 384 Liu CK, Williamson JE, Milman T, Lally SE, Shields CL. Intramuscular Eyelid Myxoma. Ophthalmic Plast Reconstr Surg 2022; 38: e180-e183
  • 385 Fangusaro J, Onar-Thomas A, Poussaint TY, Wu S. et al. A phase II trial of selumetinib in children with recurrent optic pathway and hypothalamic low-grade glioma without NF1: a Pediatric Brain Tumor Consortium study. Neuro Oncol 2021; 23: 1777-1788
  • 386 Pan Y, Hysinger JD, Barron T, Schindler NF. et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 2021; 594: 277-282
  • 387 Rong AJ, Ulloa-Padilla JP, Blessing NW, Tse DT. et al. Subperiosteal fibroma of the orbit. Orbit 2018; 37: 378-380
  • 388 Douglas VP, Douglas KAA, Cestari DM. Optic nerve sheath meningioma. Curr Opin Ophthalmol 2020; 31: 455-461
  • 389 Tang T, Wang J, Lin T, Zhai Z. et al. The treatment efficacy of radiotherapy for optic nerve sheath meningioma. Eye (Lond) 2023; DOI: 10.1038/s41433-023-02640-7..
  • 390 Huang N, Rayess HM, Svider PF, Rayess NM. et al. Orbital Paraganglioma: A Systematic Review. Skull Base 2018; 79: 407-412
  • 391 Wu Y, Zhao T, Cai Y, Zheng M. et al. Clinical outcomes of solitary fibrous tumors and hemangiopericytomas and risk factors related to recurrence and survival based on the 2021 WHO classification of central nervous system tumors. J Neurosurg 2023; 1-11 DOI: 10.3171/2023.4.JNS23147..
  • 392 Abiri A, Nguyen C, Latif K, Goshtasbi K. et al. Head and neck solitary fibrous tumors: A review of the National Cancer Database. Head Neck 2023; 45: 1934-1942
  • 393 Waldstein G, Keyser R, Stocker JT. The Eye. In: Stocker JT, Dehner LP (eds). Pediatric Pathology. Philadelphia: J B Lippincott; 1992: 463-489
  • 394 Manjandavida FP, Stathopoulos C, Zhang J, Honavar SG, Shields CL. Intra-arterial chemotherapy in retinoblastoma – A paradigm change. Indian J Ophthalmol 2019; 67: 740-775
  • 395 Ancona-Lezama D, Dalvin LA, Shields CL. Modern treatment of retinoblastoma: A 2020 review. Indian J Ophthalmol 2020; 68: 2356-2365
  • 396 Shields CL, Bas Z, Laiton A, Silva AMV. et al. Retinoblastoma: emerging concepts in genetics, global disease burden, chemotherapy outcomes, and psychological impact. Eye (Lond) 2023; 37: 815-822
  • 397 NIH. Childhood Rhabdomyosarcoma Treatment (PDQ™) – Health Professional Version. In: National Cancer Institute at the National Institutes of Health (NIH); 2020
  • 398 Olsen TG, Heegaard S. Orbital lymphoma. Surv Ophthalmol 2019; 64: 45-66
  • 399 Chung SY, Kook KH, Oh YT. Feasibility of partial-orbit irradiation as a treatment strategy for patients with orbital mucosa-associated lymphoid tissue lymphoma. Can J Ophthalmol 2023; S0008-418200106-0 DOI: 10.1016/j.jcjo.2023.03.015.
  • 400 Pereira-Da Silva MV, Di Nicola ML, Altomare F, Xu W, Tsang R, Laperriere N, Krema H. Radiation therapy for primary orbital and ocular adnexal lymphoma. Clin Transl Radiat Oncol 2022; 38: 15-20
  • 401 Ahmed OM, Ma AK, Ahmed TM, Pointdujour-Lim R. Epidemiology, outcomes, and prognostic factors of orbital lymphoma in the United States. Orbit 2020; 39: 397-402
  • 402 Annibali O, Chiodi F, Sarlo C, Cortes M. et al. Rituximab as Single Agent in Primary MALT Lymphoma of the Ocular Adnexa. Biomed Res Int 2015; 2015: 895105
  • 403 Manta AI, Vittorio A, Sullivan TJ. Long term follow-up of congenital infantile fibrosarcoma of the orbital region. Orbit 2023; 42: 641-644
  • 404 Yamazaki D, Ogihara N, Horiuchi T. Primary Orbital Dedifferentiated Liposarcoma. World Neurosurg 2020; 139: 604-607
  • 405 Gobert D, Patey N, Doyon J, Kalin-Hajdu E. Mesenchymal chondrosarcoma of the orbit masquerading as a hemophilic pseudotumor. Orbit 2021; 40: 431-434
  • 406 Wu K, Avila SA, Bhuyan R, Matloob A. et al. Orbital invasion by Esthesioneuroblastoma: a comparative case series and review of literature. Orbit 2022; 41: 1-14
  • 407 McMillan RA, Van Gompel JJ, Link MJ, Moore EJ. et al. Long-term oncologic outcomes in esthesioneuroblastoma: An institutional experience of 143 patients. Int Forum Allergy Rhinol 2022; 12: 1457-1467
  • 408 Badoual C. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Oropharynx and Nasopharynx. Head Neck Pathol 2022; 16: 19-30
  • 409 Wong WM, Young SM, Amrith S. Ophthalmic involvement in nasopharyngeal carcinoma. Orbit 2017; 36: 84-90
  • 410 Palmisciano P, Ferini G, Ogasawara C, Wahood W. et al. Orbital Metastases: A Systematic Review of Clinical Characteristics, Management Strategies, and Treatment Outcomes. Cancers (Basel) 2021; 14: 94
  • 411 Weisman RA, Kikkawa D, Moe KS, Osguthorpe JD. Orbital tumors. Otolaryngol Clin North Am 2001; 34: 1157-1174
  • 412 Hosemann W. Innere Nase und Nasennebenhöhlen. In: Strutz J, Mann W: Praxis der HNO-Heilkunde, Kopf-und Halschirurgie. Thieme Verlag, 2. Aufl. 2010: 402-454
  • 413 Barnes L, Eveson JW, Reichart P. et al. Pathology and Genetics of head and neck tumors (WHO organization classification of tumors). IARC Press; 2005
  • 414 Hosemann W, Dammer R, Bloß HG, Fietkau R. Therapie maligner Tumoren im Bereich der Nasennebenhöhlen. HNO 2002; 50: 578-593
  • 415 Lee KY, Seah LL, Tow S, Cullen JF, Fong KS. Nasopharyngeal carcinoma with orbital involvement. Ophthal Plast Reconstr Surg 2008; 24: 185-189
  • 416 Keche P, Nitnaware AZ, Mair M, Sakhare P. et al. A study of tumours giving rise to unilateral proptosis. Indian J Otolaryngol Head Neck Surg 2013; 65: 6-13
  • 417 Kim YW, Yi KI, Kang MJ, Kim SD. et al. The Clinical and Radiologic Features Affecting the Ocular Symptoms in Patients With Paranasal Sinus Mucoceles Involving the Orbit. J Craniofac Surg 2021; 32: e247-e251
  • 418 Bonavolonta G, Strianese D, Grassi P, Comune C. et al. An Analysis of 2,480 space-occupying lesions of the orbit from 1976 to 2011. Ophthal Plast Reconstr Surg 2013; Mar-Apr; 29(2): 79-86
  • 419 Peng XL, Yue ZZ, Zhang YL, Sun PY. Nasal Sinus Mucoceles Manifesting Ocular Symptoms. J Craniofac Surg 2023; 34: e141-e145
  • 420 Malik M, Vahdani K, Rose GE. Ophthalmic Presentation and Outcome for Sinonasal Mucoceles. Ophthalmic Plast Reconstr Surg 2023; 39: 44-48
  • 421 Owosho AA, Potluri A, Bilodeau EA. Osseous dysplasia (cemento-osseous dysplasia) of the jaw bones in western Pennsylvania patients: analysis of 35 cases. Pa Dent J (Harrisb) 2013; 80: 25-29
  • 422 Damera NC, Vallabhaneni KC, Tripuraneni SC, Madala S. et al. Non malignant maxillary lesions: our experiences. Indian J Otolaryngol Head Neck Surg 2013; 65: 74-79
  • 423 Muwazi L, Kamulegeya A. The 5-year prevalence of maxillofacial fibro-osseous lesions in Uganda. Oral Dis 2014; DOI: 10.1111/odi.12233.
  • 424 Phattarataratip E, Pholjaroen C, Tiranon P. A Clinicopathologic Analysis of 207 Cases of Benign Fibro-Osseous Lesions of the Jaws. Int J Surg Pathol 2014; Jun; 22(4): 326–333
  • 425 Waldman S, Shimonov M, Yang N, Spielman D. et al. Benign bony tumors of the paranasal sinuses, orbit, and skull base. Am J Otolaryngol 2022; 43: 103404
  • 426 Foster BL, Ramnitz MS, Gafni RI, Burke AB. et al. Rare Bone Diseases and Their Dental, Oral and Craniofacial Manifestations. J Dent Res. 2014
  • 427 E Horvai A, Jordan R Fibro-Osseous Lesions of the Craniofacial Bones: ß-Catenin Immunohistochemical Analysis and CTNNB1 and APC Mutation Analysis. Horvai EA, Jordan R: Head Neck Pathol 2014; 8(3): 291-297
  • 428 Garg MK, Bhardwaj R, Gupta S, Mann N. et al. Sarcomatous transformation Leiomyosarcoma) in polyostotic fibrous dysplasia. Indian J Endocrinol Metab 2013; 17: 1120-1123
  • 429 Chourmouzi D, Psoma E, Drevelegas A. Ground-glass pattern fibrous dysplasia of frontal sinus. JBR-BTR 2013; 96: 378-380
  • 430 Wong G, Randhawa P, Stephens J, Saleh H. Fibrous dysplasia of the nasal bone: case reports and literature review. J Laryngol Otol 2013; 127: 1152-1154
  • 431 Bowers CA, Taussky P, Couldwell WT. Surgical treatment of craniofacial fibrous dysplasia in adults. Neurosurg Rev 2014; 37: 47-53
  • 432 Fusconi M, Conte M, Pagliarella M, De Vincentis C. et al. Fibrous dysplasia of the maxilla: diagnostic reliability of the study image. Literature review. J Neurol Surg B Skull Base 2013; 74: 364-368
  • 433 Wick MR, McDermott MB, Swanson PE. Proliferative, reparative, and reactive benign bone lesions that may be confused diagnostically with true osseous neoplasms. Semin Diagn Pathol 2014; 31: 66-88
  • 434 Shi LL, Xiong P, Zhen HT. Management Strategies of Fibrous Dysplasia Involving the Paranasal Sinus and the Adjacent Skull Base. Ear Nose Throat J 2022; 1455613221088728 DOI: 10.1177/01455613221088728.
  • 435 Stevens WW, Schleimer RP, Kern RC. Chronic Rhinosinusitis with Nasal Polyps. J Allergy Clin Immunol Pract 2016; 4: 565-572
  • 436 Sedaghat AR, Kuan EC, Scadding GK. Epidemiology of Chronic Rhinosinusitis: Prevalence and Risk Factors. J Allergy Clin Immunol Pract 2022; 10: 1395-1403
  • 437 Vor der Holte AP, Fangk I, Glombitza S, Wilkens L, Welkoborsky HJ. Identification of Rare and Common HPV Genotypes in Sinonasal Papillomas. Head Neck Pathol 2020; 14: 936-943
  • 438 Kim DY, Hong SL, Lee CH, Jin HR. et al. Inverted papilloma of the nasal cavity and paranasal sinuses: a Korean multicenter study. Laryngoscope 2012; 122: 487-494
  • 439 Saldana M, Wearne M, Beigi B, Petrarca R. Inverted papillomas of the nasal and paranasal sinuses that involve the ocular/adnexal region. Orbit 2013; 32: 366-369
  • 440 Kamel RH, Khaled A, Abdelfattah AF, Awad AG. Surgical treatment of sinonasal inverted papilloma. Curr Opin Otolaryngol Head Neck Surg 2022; 30: 26-32
  • 441 Papaspyrou K, Welkoborsky HJ, Gouveris H, Mann WJ. Malignant and benign sinonasal paragangliomas. Laryngoscope. 2013; 123: 1830-1836
  • 442 Zhu B, Yan J. Orbital Paraganglioma. J Craniofac Surg 2019; 30: e503-e506
  • 443 Van Gerven L, Vander Poorten V, Jorissen M. Adenocarcinomas of the sinunasal tract: current opinion. B-ENT 2011; 7: 15-20
  • 444 Ansa B, Goodman M, Ward K, Kono SA. et al. Paranasal sinus squamous cell carcinoma incidence and survival based on Surveillance, Epidemiology, and End Results data, 1973 to 2009. Cancer 2013; 119: 2602-2610
  • 445 Taylor MA, Saba NF. Cancer of the Paranasal Sinuses. Hematol Oncol Clin North Am 2021; 35: 949-962
  • 446 Kuijpens JH, Louwman MW, Peters R, Janssens GO. et al. Trends in sinunasal cancer in The Netherlands: more squamous cell cancer, less adeno-carcinoma. A population-based study 1973-2009. Eur J Cancer 2012; 48: 2369-2374
  • 447 Yi JS, Cho GS, Shim MJ, Min JY. et al. Malignant tumors of the sinonasal tract in the pediatric population. Acta Otolaryngol 2012; 132: S21-S26
  • 448 Lydiatt WM, Patel SG, OʼSullivan B. et al. Head and neck cancers –major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 2017; 67: 122-137
  • 449 Mani N, Shah JP. Squamous Cell Carcinoma and Its Variants. Adv Otorhinolaryngol 2020; 84: 124-136
  • 450 Ferrari M, Taboni S, Carobbio ALC, Emanuelli E. et al. Sinonasal Squamous Cell Carcinoma, a Narrative Reappraisal of the Current Evidence. Cancers (Basel) 2021; 13: 2835
  • 451 Kisser U, Heichel J, Glien A. Seltene Erkrankungen der Orbita – Rare Diseases of the Orbit. Laryngo-Rhino-Otol 2021; 100: S1-S68
  • 452 Wolfish EB, Nelson BL, Thompson LD. Sinonasal tract mucoepidermoid carcinoma: a clinicopathologic and immunophenotypic study of 19 cases combined with a comprehensive review of the literature. Head Neck Pathol 2012; 6: 191-207
  • 453 Jangard M, Hansson J, Ragnarsson-Olding B. Primary sinonasal malignant melanoma: a nationwide study of the Swedish population, 1960-2000. Rhinology 2013; 51: 22-30
  • 454 Salari B, Foreman RK, Emerick KS, Lawrence DP. et al. Sinonasal Mucosal Melanoma: An Update and Review of the Literature. Am J Dermatopathol 2022; 44: 424-432
  • 455 Gal TJ, Silver N, Huang B. Demographics and treatment trends in sinonasal mucosal melanoma. Laryngoscope 2011; 121: 2026-2033
  • 456 Ascierto PA, Accorona R, Botti G, Farina D. et al. Mucosal melanoma of the head and neck. Crit Rev Oncol Hematol 2017; 112: 136-152
  • 457 Thawani R, Kim MS, Arastu A, Feng Z. et al. The contemporary management of cancers of the sinonasal tract in adults. CA Cancer J Clin 2023; 73: 72-112
  • 458 Devi CP, Devi KM, Kumar P, Amrutha Sindhu RV. Diagnostic challenges in malignant tumors of nasal cavity and paranasal sinuses. J Oral Maxillofac Pathol 2019; 23: 378-382
  • 459 Abbondanzo SL, Wenig BM. Non-Hodgkinʼs lymphoma of the sinonasal tract: A clinicopathologic and immunophenotypic study of 120 cases. Cancer 1995; 75: 1281-1291
  • 460 Eriksen PRG, Clasen-Linde E, Brown PN, Haunstrup L. et al. NK-and T-cell lymphoma of the nasal cavity and paranasal sinuses in Denmark 1980-2017: a nationwide cohort study. Leuk Lymphoma 2022; 63: 2579-2588
  • 461 De Potter P, Disneur D, Levecq L, Snyers B. Ocular manifestations of cancer. J Fr Ophthalmol 2002; 25: 194-202
  • 462 Wallace S, Pilon A, Kwok P, Messner LV. et al. Ophthalmic manifestations of an undifferentiated sinunasal carcinoma. Optom Vis Sci 2008; 85: 226-229
  • 463 Abdelmeguid AS, Bell D, Hanna EY. Sinonasal Undifferentiated Carcinoma. Curr Oncol Rep 2019; 21: 26
  • 464 Nishino H, Takanosawa M, Kawada K, Kanazawa T. et al. Multidsciplinary therapy consisting of minimally invasive resection, irradiation,and intra-arterial infusion of 5-fluorouracil for maxillary sinus carcinomas. Head Neck 2013; 35: 772-778
  • 465 Maroldi R, Farina D, Battaglia G, Maculotti P. et al. Magnetic resonance and computed tomography in the staging of rhinosinusal neoplasms. A cost-effectiveness evaluation. Radiol Med 1996; 91: 211-218
  • 466 Abt NB, Miller LE, Mokhtari TE, Lin DT. et al. Nasal and paranasal sinus mucosal melanoma: Long-term survival outcomes and prognostic factors. Am J Otolaryngol 2021; 42: 103070
  • 467 Banks C, Husain Q, Bleier BS. Endoscopic endonasal intraconal orbit surgery. World J Otorhinolaryngol Head Neck Surg 2019; 6: 100-105
  • 468 Kannan S, Hasegawa M, Yamada Y, Kawase T. et al. Tumors of the Orbit: Case Report and Review of Surgical Corridors and Current Options. Asian J Neurosurg 2019; 14: 678-685
  • 469 Frunza A, Slavescu D, Zamfirescu D, Stanciulescu L. et al. Orbital exenteration – a salvage procedure?. Rom J Morphol Embryol 2013; 54: 1161-1167
  • 470 López F, Rodrigo JP, Cardesa A, Triantafyllou A. et al. Update on primary head and neck mucosal melanoma. Head Neck 2016; 38: 147-155
  • 471 Kreppel M, Scheer M, Beutner D, Drebber U. et al. Stage grouping in tumors of the ethmoid sinuses and the nasal cavity using the sixth edition of the UICC classification of malignant tumors. Head Neck 2013; 35: 257-264
  • 472 Albu S, Florian I, Szabo I, Baciut M. et al. Craniofacial resection for malignant tumors of the paransal sinuses. Chirurgia (Bucur) 2011; 106: 219-225
  • 473 Michel J, Fakhry N, Santini L, Mancini J. et al. Nasal and paransal esthesioneuroblastomas: clinical outcomes. Eur Ann Otorhinolaryngol Head Neck Dis 2012; 129: 238-243
  • 474 Mueller SK, Bleier BS. Endoscopic surgery for intraconal orbital tumors. HNO 2022; 70: 345-351
  • 475 Sindwani R, Sreenath SB, Recinos PF. Endoscopic Endonasal Approach to Intraconal Orbital Tumors: Outcomes and Lessons Learned. Laryngoscope. 2023; DOI: 10.1002/lary.30757.. Online ahead of print.
  • 476 Paluzzi A, Gardner PA, Fernandez-Miranda JC, Tormenti MJ. et al. “Round-the-Clock” Surgical Access to the Orbit. J Neurol Surg B Skull Base 2015; 76: 12-24 DOI: 10.1055/s-0033-1360580.
  • 477 Welkoborsky HJ, Plontke SK. Chirurgische Zugangswege zur Orbita. HNO. 2018; 66: 812-826
  • 478 Caballero-García J, Aparicio-García C, Linares-Benavides YJ, López-Sánchez M. et al. Minimally Invasive 360-Degree Approach to Intraconal Orbital Tumors. Am J Ophthalmol 2021; 224: 301-309
  • 479 Welkoborsky HJ, Wiechens B. Chirurgische Zugangswege zur Orbita. In: Welkoborsky HJ, Wiechens B, Hinni ML (Hrsg.). Orbita: Thieme Verlag; 2016. S. 345 ff
  • 480 Koutourousiou M, Gardner PA, Stefko ST, Paluzzi A. et al. Combined endoscopic endonasal transorbital approach with transconjunctival-medial orbitomy for excisional biopsy of the optic nerve: technical note. J Neurol Surg Rep 2012; 73: 52-56
  • 481 Murchison AP, Rosen MR, Evans JJ, Bilyk JR. Endoscopic approach to the orbital apex and periorbital skull base. Laryngoscope 2011; 121: 463-467
  • 482 Banks C, Husain Q, Bleier BS. Endoscopic endonasal intraconal orbit surgery. World J Otorhinolaryngol Head Neck Surg 2019; 6: 100-105
  • 483 Zhang X, Hua W, Quan K, Yu G. et al. Endoscopic Endonasal Intraconal Approach for Orbital Tumor Resection: Case Series and Systematic Review. Front Oncol 2022; 11: 780551 DOI: 10.3389/fonc.2021.780551.. eCollection 2021
  • 484 Welkoborsky HJ, Möbius H, Bauer L, Wiechens B. Traumatische Optikusneuropathie. Langzeitergebnisse nach endonasaler mikrochirurgischer Dekompression des N. opticus. HNO 2011; 59: 997-1004
  • 485 Wagenmann M, Scheckenbach K, Kraus B, Stenin I. Komplikationen bei Operationen an der Rhinobasis. HNO 2018; 66: 438-446
  • 486 Hosemann W. Fehler und Gefahren: Eingriffe an den Nasennebenhohlen und der Frontobasis unter Berücksichtigung mediko-legaler Aspekte. Laryngorhinootologie 2013; 92: S88-S136
  • 487 Kühnel T. Erkennung und Vermeidung von Schwierigkeiten bei der Tränenwegschirurgie. HNO 2018; 66: 432-437
  • 488 Shen YD, Paskowitz D, Merbs SL, Grant MP. Retrocaruncular approach for the repair of medial orbital wall fractures: an anatomical and clinical study. Craniomaxillofac Trauma Reconstr 2015; 8: 100-104
  • 489 Mombaerts I, Allen RC. The transconjunctival orbitotomy: A versatile approach to the orbit and beyond. Surv Ophthalmol 2023; 68: 265-279
  • 490 Chhabra N, Wu AW, Fay A, Metson R. Endoscopic resection of orbital hemangiomas. Int Forum Allergy Rhinol 2014; 4: 251-254
  • 491 Alabiad CR, Weed DT, Walker TJ, Vivero R. et al. En bloc resection of lacrimal sac tumors and simultaneous orbital reconstruction: Surgical and functional outcomes. Ophthal Plast Reconstr Surg. 2014 (Epub)
  • 492 Rajabi MT, Tabary M, Baharnoori SM, Salabati M. et al. Orbital anatomical parameters affecting outcome of deep lateral orbital wall decompression. Eur J Ophthalmol 2021; 31: 2069-2075
  • 493 Küchlin S, Gruber M, Reich M, Joachimsen L. et al. Orbital decompression in Gravesʼ orbitopathy-Experiences and results. Ophthalmologe. 2021; 118: 345-355
  • 494 Park SJ, Yang JW. The transconjunctival approach: a minimally invasive approach to various kinds of retrobulbar tumors. J Craniofac Surg 2013; 24: 1991-1995
  • 495 Kingdom TT, Davies BW, Durairaj VD. Orbital decompression for the management of thyroid eye disease: An analysis of outcomes and complications. Laryngoscope 2015; 125: 2034-2040
  • 496 Lyson T, Sieskiewicz A, Rogowski M, Mariak Z. Endoscopic lateral orbitotomy. Acta Neurochir (Wien) 2014; 156: 1897-1900 DOI: 10.1007/s00701-014-2205-7.
  • 497 Williams JS, Sahu PD. Surgical management of the orbit in thyroid eye disease: lateral orbital decompression. Curr Opin Otolaryngol Head Neck Surg 2021; 29: 289-293
  • 498 Reich SS, Null RC, Timoney PJ, Sokol JA. Trends in Orbital Decompression Techniques of Surveyed American Society of Ophthalmic Plastic and Reconstructive Surgery Members. Ophthal Plast Reconstr Surg 2016; 32: 434-437
  • 499 Bounajem MT, Rennert RC, Budohoski KP, Azab M. et al. Modified Lateral Orbitotomy Approach to Lesions of the Orbital Apex, Superior Orbital Fissure, Cavernous Sinus, and Middle Cranial Fossa. Oper Neurosurg (Hagerstown) 2023; 24: 514-523
  • 500 Tai JHC, Lai KKH, Kuk AKT, Chan E. et al. Modified vertical lid split orbitotomy: a case series and literature review. Orbit 2023; 42: 181-184
  • 501 Wilson S, Ellis E. Surgical approaches to the infraorbital rim and orbital floor: the case for the subtarsal approach. J Oral Maxillofac Surg 2006; 64: 104-107
  • 502 Ridgway EB, Chen C, Colakoglu S, Gautam S. et al. The incidence of lower eyelid malposition after facial fracture repair: a retrospective study and meta-analysis comparing subtarsal, subciliary, and transconjunctival incisions. Plast Reconstr Surg 2009; 124: 1578-1586
  • 503 Perkins EL, Brandon BM, Sreenath SB, Desai DD. et al. Transfacial and Craniofacial Approaches for Resection of Sinonasal and Ventral Skull Base Malignancies. Otolaryngol Clin North Am 2017; 50: 287-300
  • 504 Cho KJ, Paik JS, Yang SW. Surgical outcomes of transconjunctival anterior orbitotomy for intraconal orbital cavernous hemangioma. Korean J Ophthalmol 2010; 24: 274-278
  • 505 Rimmer R, Geltzeiler M. Endoscopic Medial Orbitotomy for Lateral Access to Anterior Cranial Base Pathology. Laryngoscope 2023; 133: 1336-1338
  • 506 Mombaerts I, Allen RC. The transconjunctival orbitotomy: A versatile approach to the orbit and beyond. Surv Ophthalmol 2023; 68: 265-279
  • 507 Das S, Vathulya M, Singh A, Chaturvedi J. et al. Site-based customized surgical approaches for orbital lesion and their outcomes-A case series. Int J Surg Case Rep 2023; 110: 108782 DOI: 10.1016/j.ijscr.2023.108782.
  • 508 Abelovský J, Slávik R, Hocková B, Štorcelová D. et al. Transconjunctival Approach for Surgical Repair of Infraorbital Rim Fractures and Orbital Floor Fractures. Cesk Slov Oftalmol 2023; Spring 79: 170-176
  • 509 Soliman L, Rhee B, Lerner JL, Sobti N. et al. Lateral Canthotomy Revisited: A Refined Surgical Approach for Orbital Access. Plast Reconstr Surg Glob Open 2023; 11: e5014
  • 510 Appling WD, Patrinely JR, Salzer TA. Transconjunctival approach vs subciliary skin-muscle flap approach for orbital fracture repair. Arch Otolaryngol Head Neck Surg 1993; 119: 1000-1007
  • 511 Oh JY, Rah SH, Kim YH. Transcaruncular approach to blowout fractures of the medial orbital wall. Korean J Ophthalmol 2003; 17: 50-54
  • 512 Al-Moraissi EA, Thaller SR, Ellis E. Subciliary vs. transconjunctival approach for the management of orbital floor and periorbital fractures: A systematic review and meta-analysis. J Craniomaxillofac Surg 2017; 45: 1647-1654
  • 513 Davies BW, Hink EM, Durairaj VD. Transconjunctival inferior orbitotomy: indications, surgical technique, and complications. Craniomaxillofac Trauma Reconstr 2014; 7: 169-174
  • 514 Palavalli MH, Huayllani MT, Gokun Y, Lu Y. et al. Surgical Approaches to Orbital Fractures: A Practical and Systematic Review. Plast Reconstr Surg Glob Open 2023; 11: e4967
  • 515 Yamashita M, Kishibe M, Shimada K. Incidence of lower eyelid complications after a transconjunctival appraoch: influence of repeated incisions. J Craniofac Surg 2014; 25: 1183-1186
  • 516 Wagh RD, Naik M, Bothra N, Singh S. Lower eyelid entropion following transconjunctival orbital fracture repair: Case series and literature review. Saudi J Ophthalmol 2023; 37: 154-157
  • 517 Oztel M, Goh R, Hsu E. Subtarsal Versus Transconjunctival Approach: A Long-Term Follow-Up of Esthetic Outcomes and Complications. J Oral Maxillofac Surg 2021; 79: 1327.e1-1327.e6
  • 518 Vartanian JG, Toledo RN, Bueno T, Kowalski LP. Orbital exenteration for sinonasal malignancies: indications, rehabilitation and oncologic outcomes. Curr Opin Otolaryngol Head Neck Surg 2018; 26: 122-126
  • 519 Kasaee A, Eshraghi B, Nekoozadeh S, Ameli K. et al. Orbital Exenteration: A 23-year Report. Korean J Ophthalmol 2019; 33: 366-370
  • 520 Fernandez C, Forrest P, Sivalingam M, Milman T. et al. Exenteration and Adjuvant Radiotherapy for Primary Carcinosarcoma of the Anterior. Orbit: A Case Report. Ophthalmic Plast Reconstr Surg 2021; 37: e136-e139
  • 521 Furdova A, Babal P, Zahorjanova P, Sekac J. Subtotal Exenteration of the Orbit for Benign Orbital Disease. J Craniofac Surg 2020; 31: 1367-1369
  • 522 Herzog M. Tumoren der Nasennebenhohlen mit Übergreifen auf die Orbita. HNO 2018; 66: 730-742 Aug 16 DOI: 10.1007/s00106-018-0540-3.