Synlett
DOI: 10.1055/a-2214-7557
account

Stereo- and Site-Selective Acylation in Carbohydrate Synthesis

Stephanie A. Blaszczyk
a   School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
b   Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
,
Xiaolei Li
a   School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
,
Peng Wen
a   School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
,
Weiping Tang
a   School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
b   Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
› Author Affiliations
S.A.B. was funded by the NSF GRFP and the NIH Chemistry-Biology Interface training grant (T32 GM008505). W.T. thanks the NIH (U01 GM125290 and R35 GM148266) for financial support.


Abstract

Carbohydrates are synthetically challenging molecules with vital biological roles in all living systems. To better understand the biological functions of this fundamentally important class of molecules, novel methodologies are needed, including site-selective functionalization and glycosylation reactions. This account describes our efforts toward the development of novel methodologies for site-selective functionalization of carbohydrates and stereoselective glycosylation through various acylation reactions.



Publication History

Received: 21 October 2023

Accepted after revision: 20 November 2023

Accepted Manuscript online:
20 November 2023

Article published online:
10 January 2024

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Bertozzi CR, Kiessling LL. Science 2001; 291: 2537
    • 1b Stallforth P, Lepenies B, Adibekian A, Seeberger PH. J. Med. Chem. 2009; 52: 5561
    • 1c Ernst B, Magnani JL. Nat. Rev. Drug Discovery 2009; 8: 661
    • 1d Dwek RA. Chem. Rev. 1996; 96: 683
  • 3 Achmatowicz O, Bukowski P, Szechner B, Zwierzchowska Z, Zamojski A. Tetrahedron 1971; 27: 1973
  • 4 Wang HY, Yang K, Bennett SR, Guo SR, Tang W. Angew. Chem. Int. Ed. 2015; 54: 8756
  • 5 Schmidt B, Hauke S. Eur. J. Org. Chem. 2014; 1951
  • 6 Matsushima Y, Kino J. Eur. J. Org. Chem. 2010; 2206
  • 7 Thomson MI, Nichol GS, Lawrence AL. Org. Lett. 2017; 19: 2199
  • 8 Blume F, Liu Y.-C, Thiel D, Deska J. J. Mol. Catal. B: Enzym. 2016; 134: 280
  • 9 Della-Felice F, Sarotti AM, Krische MJ, Pilli RA. J. Am. Chem. Soc. 2019; 141: 13778
  • 10 Zhu Z, Wang H.-Y, Simmons C, Tseng P.-S, Qiu X, Zhang Y, Duan X, Yang J.-K, Tang W. Adv. Synth. Catal. 2018; 360: 595
    • 11a Babu RS, O’Doherty GA. J. Am. Chem. Soc. 2003; 125: 12406
    • 11b Zheng J, O’Doherty GA. 2.14 - De Novo Synthesis of Oligosaccharides Via Metal Catalysis . In Comprehensive Glycoscience, 2nd ed. Barchi JJ. Jr. Elsevier; Oxford: 2021: 435-463
  • 12 Wang HY, Yang K, Yin D, Liu C, Glazier DA, Tang W. Org. Lett. 2015; 17: 5272
  • 13 Taylor JE, Bull SD, Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
    • 14a Birman VB, Li X. Org. Lett. 2006; 8: 1351
    • 14b Li X, Jiang H, Uffman EW, Guo L, Zhang Y, Yang X, Birman VB. J. Org. Chem. 2012; 77: 1722
    • 15a Nakata K, Gotoh K, Ono K, Futami K, Shiina I. Org. Lett. 2013; 15: 1170
    • 15b Shiina I, Nakata K, Ono K, Onda Y, Itagaki M. J. Am. Chem. Soc. 2010; 132: 11629
    • 15c Shiina I, Nakata N. Tetrahedron Lett. 2007; 48: 8314
  • 16 Babu RS, Qian C, Kang S.-W, Zhou M, O’Doherty GA. J Am. Chem. Soc. 2012; 134: 11952
  • 17 Ortiz A, Benkovics T, Beutner GL, Shi Z, Bultman M, Nye J, Sfouggatakis C, Kronenthal DR. Angew. Chem. Int. Ed. 2015; 54: 7185
  • 18 Song W, Zhao Y, Lynch JC, Kim H, Tang W. Chem. Commun. 2015; 51: 17475
  • 19 Zhu Z, Glazier DA, Yang D, Tang W. Adv. Synth. Catal. 2018; 360: 2211
    • 20a Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. A. Chem. Soc. Rev. 2015; 44: 7591
    • 20b Hulst MB, Grocholski T, Neefjes JJ. C, van Wezel GP, Metsä-Ketelä M. Nat. Prod. Rep. 2022; 39: 814
    • 20c Deane C. Nat. Chem. Biol. 2016; 12: 467
    • 20d Bellucci MC, Volonterio A. Antibiotics 2020; 9: 504
  • 21 Li X, Liu P, Houk KN, Birman VB. J. Am. Chem. Soc. 2008; 130: 13836
  • 22 Wang HY, Simmons CJ, Zhang Y, Smits AM, Balzer PG, Wang S, Tang W. Org. Lett. 2017; 19: 508
  • 23 Glazier DA, Schroeder JM, Liu J, Tang W. Adv. Synth. Catal. 2018; 360: 464
    • 24a Wang HY, Blaszczyk SA, Xiao G, Tang W. Chem. Soc. Rev. 2018; 47: 681
    • 24b Lawandi J, Rocheleau S, Moitessier N. Tetrahedron 2016; 72: 6283
    • 25a David S, Hanessian S. Tetrahedron 1985; 41: 643
    • 25b Oshima K, Kitazono E, Aoyama Y. Tetrahedron Lett. 1997; 38: 5001
    • 25c Lee D, Taylor MS. J. Am. Chem. Soc. 2011; 133: 3724
    • 25d Gouliaras C, Lee D, Chan L, Taylor MS. J. Am. Chem. Soc. 2011; 133: 13926
    • 25e Ren B, Ramström O, Zhang Q, Ge J, Dong H. Chem. Eur. J. 2016; 22: 2481
    • 25f Ren B, Lv J, Zhang Y, Tian J, Dong H. ChemCatChem 2017; 9: 950
    • 25g Li R, Tang H, Wan L, Zhang X, Fu Z, Liu J, Yang S, Jia D, Niu D. Chem 2017; 3: 834
    • 25h Shang W, Mou Z, Tang H, Zhang X, Fu Z, Niu D. Angew. Chem. Int. Ed. 2018; 57: 314
    • 25i Rao VU. B, Wang C, Demarque DP, Grassin C, Otte F, Merten C, Strohmann C, Loh CC. J. Nat. Chem. 2023; 15: 424
  • 26 Xiao G, Cintron-Rosado GA, Glazier DA, Xi BM, Liu C, Liu P, Tang W. J. Am. Chem. Soc. 2017; 139: 4346
    • 27a Robinson ER. T, Fallan C, Simal C, Slawina AM. Z, Smith AD. Chem. Sci. 2013; 4: 2193
    • 27b Yan W, Zheng M, Xu C, Chen F. Green Synth. Catal. 2021; 2: 329
  • 28 Hao H, Qi X, Tang W, Liu P. Org. Lett. 2021; 23: 4411
  • 29 Xiao X, Zeng J, Fang J, Sun J, Li T, Song Z, Cai L, Wan Q. J. Am. Chem. Soc. 2020; 142: 5498
    • 30a Lian G, Zhang X, Biao Y. Carbohydr. Res. 2015; 403: 13
    • 30b Stick RV, Williams SJ. Carbohydrates: The Essential Molecules of Life 2009
    • 30c Escopy S, Demchenko AV. Chem. Eur. J. 2022; 28: e202103747
  • 31 Blaszczyk SA, Xiao G, Wen P, Hao H, Wu J, Wang B, Carattino F, Li Z, Glazier DA, McCarty BJ, Liu P, Tang W. Angew. Chem. Int. Ed. 2019; 58: 9542
  • 32 Dohi H, Nishida Y. Trends in Glycoscience and Glycotechnology 2014; 26: 119
  • 33 Li ZT, Gildersleeve JC. J. Am. Chem. Soc. 2006; 128: 11612
    • 34a Lahmann M, Oscarson S. Can. J. Chem. 2002; 80: 889
    • 34b Crich D, Li W. Org. Lett. 2007; 72: 7794
  • 35 Moya-Lopez JF, Elhalem E, Recio R, Alvarez E, Fernandez I, Khiar N. Org. Biomol. Chem. 2015; 13: 1904
  • 36 Zhou D, Mattner J, Cantu VIII, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu Y.-P, Yamashita T, Teneberg S, Wang D, Proia RL, Levery SB, Savage PB, Teyton L, Bendelac A. Science 2004; 306: 1786
  • 37 Alanazi AS, James E, Mehellou Y. ACS Med. Chem. Lett. 2019; 10: 2
  • 38 Dai Q, Chen R. Heteroat. Chem. 1997; 8: 279
    • 39a Liu S, Zhang Z, Xie F, Butt NA, Sun L, Zhang W. Tetrahedron: Asymmetry 2012; 23: 329
    • 39b Wang L, Du Z, Wu Q, Jin R, Bian Z, Kang C, Guo H, Ma X, Gao L. Eur. J. Org. Chem. 2016; 11: 2024
    • 39c Ye X, Peng L, Bao X, Tan C, Wang H. Green Synth. Catal. 2021; 2: 6
  • 40 DiRocco DA, Ji Y, Sherer EC, Klapars A, Reibarkh M, Dropinski J, Mathew R, Maligres P, Hyde AM, Limanto J, Brunskill A, Ruck RT, Campeau L.-C, Davies IW. Science 2017; 356: 426
  • 41 Glazier DA, Schroeder JM, Blaszczyk SA, Tang W. Adv. Synth. Catal. 2019; 361: 3729
  • 43 Wang H.-Y, Simmons CJ, Blaszczyk SA, Balzer PG, Luo R, Duan X, Tang W. Angew. Chem. Int. Ed. 2017; 56: 15698
    • 44a Imagawa H, Kinoshita A, Fukuyama T, Yamamoto H, Nishizawa M. Tetrahedron Lett. 2006; 47: 4729
    • 44b Zhang Y, Wang P, Song N, Li M. Carbohydr. Res. 2013; 381: 101
    • 44c Li Y, Yang Y, Yu B. Tetrahedron Lett. 2008; 49: 3604
    • 44d Koppolu SR, Niddana R, Balamurugan R. Org. Biomol. Chem. 2015; 13: 5094
    • 44e Mishra B, Neralkar M, Hotha S. Angew. Chem. Int. Ed. 2016; 55: 7786
    • 45a Mensah EA, Nguyen HM. J. Am. Chem. Soc. 2009; 131: 8778
    • 45b Mensah EA, Yu F, Nguyen HM. J. Am. Chem. Soc. 2010; 132: 14288
  • 47 Wen P, Simmons CJ, Ma ZX, Blaszczyk SA, Balzer PG, Ye W, Duan X, Wang HY, Yin D, Stevens CM, Tang W. Org. Lett. 2020; 22: 1495
    • 48a Koide K, Ohno M, Kobayashi S. Tetrahedron Lett. 1991; 32: 7065
    • 48b Furukawa H, Koide K, Takao K.-i, Kobayashi S. Chem. Pharm. Bull. 1998; 46: 1244
  • 49 Ye W, Stevens CM, Wen P, Simmons CJ, Tang W. J. Org. Chem. 2020; 85: 16218
    • 50a Wu J, Li X, Qi X, Duan X, Cracraft WL, Guizei IA, Liu P, Tang W. J. Am. Chem. Soc. 2019; 141: 19902
    • 50b Wu J, Jia P, Kuniyil R, Liu P, Tang W. Angew. Chem. Int. Ed. 2023; 62: e202307144
  • 51 Li X, Wu J, Tang W. J. Am. Chem. Soc. 2022; 144: 3727