Synlett 2024; 35(06): 616-634
DOI: 10.1055/a-2212-8502
account
Special Issue to Celebrate the Centenary Year of Prof. Har Gobind Khorana

Current Strategies on the Enantioselective Synthesis of Modified Nucleosides

Samir Kumar Mondal
a   School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha, 752050, India
,
Birkishore Mahto
b   Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7Panchanpur Road, Gaya, Bihar, 824236, India
,
Shantanu Pal
a   School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha, 752050, India
,
Girish Chandra
b   Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7Panchanpur Road, Gaya, Bihar, 824236, India
› Institutsangaben
Financial support from the Council of Scientific and Industrial Research (CSIR), MHRD, Government of India (2(0460)/21/EMR-II) is gratefully acknowledged by S.P. B.M. is thankful to the University Grants Commission (UGC), New Delhi, India, for a research fellowship.


Abstract

The isolation of two carbocyclic nucleosides, viz., neplanocin A and aristeromycin, from natural sources, triggered a revolution in the scientific community, leading to the development of more versatile and therapeutically useful compounds. For this purpose, many new methods for the synthesis of the carbocyclic framework of nucleosides have been developed. These efforts resulted in the successful development of many marketable drugs. The inherent benefits associated with carbocyclic nucleosides, such as higher lipophilicity and metabolic stability, resistance against glycosidic hydrolysis and the ability to modify aromatic bases by cellular phosphorylases, make them popular for the development of drugs against cancer and different viruses. Classically, carbocyclic nucleosides of various ring sizes and configurations have been synthesized starting from chiral pool substrates, such as ribose, glucose, etc., but recently, many other new asymmetric versions have been developed. Herein, we present recent developments on the catalytic enantioselective synthesis of nucleoside analogues, including carbocyclic and other varieties. This account provides new insights into the future development of modified nucleosides.

1 Introduction

2 Cyclic Nucleosides

3 Acyclic Nucleosides

4 Conclusion



Publikationsverlauf

Eingereicht: 22. Juli 2023

Angenommen nach Revision: 16. November 2023

Accepted Manuscript online:
16. November 2023

Artikel online veröffentlicht:
23. Februar 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 De Clercq EJ. Clin. Virol. 2004; 30: 115
  • 2 Guinan M, Benckendorff C, Smith M, Miller GJ. Molecules 2020; 25: 2050
  • 3 Man S, Lu Y, Yin L, Cheng X, Ma L. Drug Discovery Today 2021; 26: 1490
  • 4 Chandra G, Patel S, Panchal M, Singh DV. Mini-Rev. Med. Chem. 2021; 21: 833
  • 5 Zenchenko AA, Drenichev MS, Mikhailov SN. Curr. Med. Chem. 2021; 28: 5284
  • 6 Chandra G, Singh DV, Mahato GK, Patel S. Chem. Pap. 2023; 77: 4085
  • 7 Chandra G, Majik MS, Lee JY, Jeong LS. Org. Lett. 2012; 14: 2134
    • 8a Alexander V, Choi WJ, Chun J, Kim HO, Jeon JH, Tosh DK, Lee HW, Chandra G, Choi J, Jeong LS. Org. Lett. 2010; 12: 2242
    • 8b Yu J, Kim JW, Chandra G, Saito-Tarashima N, Nogi Y, Ota M, Minakawa N, Jeong LS. Bioorg. Med. Chem. Lett. 2023; 83: 129172
  • 9 Choi WJ, Chung H.-J, Chandra G, Alexander V, Zhao LX, Lee HW, Nayak A, Majik MS, Kim HO, Kim J.-H, Lee YB, Ahn CH, Lee SK, Jeong LS. J. Med. Chem. 2012; 55: 4521
  • 10 Chandra G, Moon YW, Lee Y, Jang JY, Song J, Nayak A, Oh K, Mulamoottil VA, Sahu PK, Kim G, Chang T.-S, Noh M, Lee SK, Choi S, Jeong LS. J. Med. Chem. 2015; 58: 5108
  • 11 Jeong LS, Pal S, Choe SA, Choi WJ, Jacobson KA, Gao Z.-G, Klutz AM, Hou X, Kim HO, Lee HW, Lee SK, Tosh DK, Moon HR. J. Med. Chem. 2008; 51: 6609
  • 12 Mulamoottil VA, Majik MS, Chandra G, Jeong LS. Recent Advances in Synthesis and Biological Activity of 4-Thionucleosides . In Chemical Synthesis of Nucleoside Analogues . Merino P. John Wiley & Sons; Hoboken: 2013: 655
  • 13 Sivakrishna B, Shukla M, Santra MK, Pal S. Carbohydr. Res. 2020; 497: 108113
  • 14 Sivakrishna B, Islam S, Santra MK, Pal S. Drug Dev. Res. 2020; 81: 274
  • 15 Sivakrishna B, Islam S, Panda A, Saranya M, Santra MK, Pal S. Anticancer Agents Med. Chem. 2019; 18: 1425
  • 16 Choi MJ, Chandra G, Lee HW, Hou X, Choi WJ, Phan K, Jacobson KA, Jeong LS. Org. Biomol. Chem. 2011; 9: 6955
  • 17 Choi WJ, Ko YJ, Chandra G, Lee HW, Kim HO, Koh HJ, Moon HR, Jung YH, Jeong LS. Tetrahedron 2012; 68: 1253
  • 18 Li J.-P, Tuo H.-R, Xie M.-S, Kang B, Qu G.-R, Guo H.-M. Asian J. Org. Chem. 2018; 7: 128
  • 19 Kusaka T, Yamamoto H, Shibata M, Muroi M, Kishi T, Mizuno K. J. Antibiot. (Tokyo) 1968; 21: 255
  • 20 Yaginuma S, Muto N, Tsujino M, Sudate Y, Hayashi M, Otani M. J. Antibiot. (Tokyo) 1981; 34: 359
  • 21 Das S, Panda A, Pal S. Carbohydr. Res. 2015; 416: 24
  • 22 Panda A, Satpati S, Dixit A, Pal S. RSC Adv. 2016; 6: 11233
  • 23 Wang T, Lee HJ, Tosh DK, Kim HO, Pal S, Choi S, Lee Y, Moon HR, Zhao LX, Lee KM, Jeong LS. Bioorg. Med. Chem. Lett. 2007; 17: 4456
    • 24a Manna MS, Mukherjee S. Org. Biomol. Chem. 2015; 13: 18
    • 24b Pfeiffer M, Nidetzky B. Curr. Opin. Biotechnol. 2023; 79: 102873
    • 25a Vaidya T, Eisenberg R, Frontier AJ. ChemCatChem 2011; 3: 1531
    • 25b Rajapaksha DG, Mondal S, Wang JW, Meanwell MW. Med. Chem. Res. 2023; 32: 1315
    • 26a Boutureira O, Matheu MI, Díaz Y, Castillón S. Chem. Soc. Rev. 2013; 42: 5056
    • 26b Shet H, Sahu R, Sanghvi YS, Kapdi AR. Chem. Rec. 2022; 22: e202200066
    • 26c Giesen KJ. D. V, Thompson MJ, Meng Q, Lovelock SL. JACS Au 2023; 3: 13
    • 26d Maria C, Rauter AP. Carbohydr. Res. 2023; 532: 108889
    • 27a Nagai K, Kiguchi S, Koyama H, Hume EW, Tsujimoto S. EP2228373B1, 2008
    • 27b Davison EK, Petrone DA, Meanwell M, Nodwell MB, Silverman SM, Campeau L.-C, Britton R. Nat. Protoc. 2022; 17: 2008
    • 28a Xie MS, Wang Y, Li JP, Du C, Zhang YY, Hao EJ, Zhang YM, Qu GR, Guo HM. Chem. Commun. 2015; 51: 12451
    • 28b Guo H.-M, Yuan T.-F, Niu H.-Y, Liu J.-Y, Mao R.-Z, Li D.-Y, Qu G.-R. Chem. Eur. J. 2011; 17: 4095
  • 29 Racine S, Denanteuil F, Serrano E, Waser J. Angew. Chem. Int. Ed. 2014; 53: 8484
  • 30 Huang KX, Xie MS, Zhang QY, Niu HY, Qu GR, Guo HM. Org. Lett. 2018; 20: 5398
  • 31 Huang K.-X, Xie M.-S, Zhang Q.-Y, Qu G.-R, Guo H.-M. Org. Lett. 2018; 20: 389
  • 32 Huang KX, Xie MS, Wang DC, Sang JW, Qu GR, Guo HM. Chem. Commun. 2019; 55: 13550
  • 33 Gao Y.-W, Niu H.-Y, Zhang Q.-Y, Xie M.-S, Qu G.-R, Guo H.-M. Adv. Synth. Catal. 2018; 360: 2813
  • 34 Kang S, Jang SH, Lee J, Kim DG, Kim M, Jeong W, Rhee YH. Org. Lett. 2017; 19: 4684
  • 35 Yang Q, Xie M, Xia C, Sun H, Zhang D, Huang K, Guo Z, Qu G, Guo H. Chem. Commun. 2014; 50: 14809
  • 36 Patel NR, Nawrat CC, McLaughlin M, Xu Y, Hu MA, Yang H, Fryszkowska A, Li H, Whittaker AM, Andreani T, Brunskill A, Tschaen DM, Maloney KM. Org. Lett. 2020; 22: 4659
  • 37 Zhang Y.-M, Zhang Q.-Y, Wang D.-C, Xie M.-S, Qu G.-R, Guo H.-M. Org. Lett. 2019; 21: 2998
  • 38 You C, Wei B, Li X, Yang Y, Liu Y, Lv H, Zhang X. Angew. Chem. 2016; 128: 6621
  • 39 Jurado S, Dom B, Illa O, Balzarini J, Alib R. Int. J. Mol. Sci. 2022; 23: 9704
  • 40 Mishra S, Modicom FC. T, Dean CL, Fletcher SP. Commun. Chem. 2022; 5: 154
  • 41 Trost BM, Xu S, Sharif EU. J. Am. Chem. Soc. 2019; 141: 10199
  • 42 Patel NR, Huffman MA, Wang X, Ding B, McLaughlin M, Newman JA, Andreani T, Maloney KM, Johnson HC, Whittaker AM. Chem. Eur. J. 2020; 26: 14118
  • 43 Wang H.-X, Guan F.-J, Xie M.-S, Qu G.-R, Guo H.-M. Adv. Synth. Catal. 2018; 360: 2233
  • 44 Peifer M, Berger R, Shurtleff VW, Conrad JC, Macmillan DW. C. J. Am. Chem. Soc. 2014; 136: 5900
  • 45 Simonovich SP, Van Humbeck JF, MacMillan DW. C. Chem. Sci. 2012; 3: 58
  • 46 Dalençon S, Youcef RA, Pipelier M, Maisonneuve V, Dubreuil D, Huet F, Legoupy S. J. Org. Chem. 2011; 76: 8059
  • 47 Xie MS, Zhou P, Niu HY, Qu GR, Guo HM. Org. Lett. 2016; 18: 4344
  • 48 Wang H.-X, Li W.-P, Zhang M.-M, Xie M.-S, Qu G.-R, Guo H.-M. Chem. Commun. 2020; 56: 11649
  • 49 Li J.-P, Zhao GF, Wang H.-X, Xie M.-S, Qu G.-R, Guo H.-M. Org. Lett. 2017; 19: 6494
  • 50 Huang KX, Xie MS, Zhao GF, Qu GR, Guo HM. Adv. Synth. Catal. 2016; 358: 3627
  • 51 Li H, Zhu S, Zheng G. Bioorg. Med. Chem. Lett. 2018; 28: 1071
  • 52 Su Y, Gao S, Li H, Zheng G. Process Biochem. 2018; 72: 96
  • 53 Arita M, Adachi K, Ito Y, Sawai H, Ohno M. J. Am. Chem. Soc. 1983; 105: 4049
  • 54 McLaughlin M, Kong J, Belyk KM, Chen B, Gibson AW, Keen SP, Lieberman DR, Milczek EM, Moore JC, Murray D, Peng F, Qi J, Reamer RA, Song ZJ, Tan L, Wang L, Williams MJ. Org. Lett. 2017; 19: 926
  • 55 Ni G, Du Y, Tang F, Liu J, Zhao H, Chen Q. RSC Adv. 2019; 9: 14302
  • 56 Wang Q, Mu J, Zeng J, Wan L, Zhong Y, Li Q, Li Y, Wang H, Chen F. Nat. Commun. 2023; 14: 138
  • 57 Kang B, Zhang Q.-Y, Qu G.-R, Guo H.-M. Adv. Synth. Catal. 2020; 362: 1955
  • 58 De Clercq E. Antiviral Res. 2007; 75: 1
  • 59 De Clercq E, Holý A. Nat. Rev. Drug Discov. 2005; 4: 928
  • 60 Pal S, Chandra G, Patel S, Singh S. Chem. Rec. 2022; 22: e202100335
  • 61 Pack EJ. Jr, Bleiberg B, Rosenberg IE. Chirality 1990; 2: 275
  • 62 Kiesewetter DO, Knudson K, Collins M, Srinivasula S, Lim E, Di Mascio M. J. Labelled Compd. Radiopharm. 2008; 51: 187
  • 63 Brodfuehrer PR, Howell HG, Sapino CJr, Vemishetti P. Tetrahedron Lett. 1994; 35: 3243
  • 64 Vemishetti P, Saibaba R, Panzica RP, Abushanab E. J. Med. Chem. 1990; 33: 681
  • 65 Guo H.-M, Wu Y.-Y, Niu H.-Y, Wang D.-C, Qu G.-R. J. Org. Chem. 2010; 75: 3863
  • 66 Azzouz M, Soriano S, Escudero-Casao M, Matheu MI, Castillón S, Díaz Y. Org. Biomol. Chem. 2017; 15: 7227
  • 67 Guo H.-M, Wu S, Niu H.-Y, Song G, Qu G.-R. Chemical Synthesis of Acyclic Nucleosides . In Chemical Synthesis of Nucleoside Analogues . Merino P. John Wiley & Sons; Hoboken: 2013: 103
  • 68 Wei T, Xie M.-S, Qu G.-R, Niu H.-Y, Guo H.-M. Org. Lett. 2014; 16: 900
  • 69 Evans PA, Lai KW, Zhanga H.-R, Huffman JC. Chem. Commun. 2006; 844
  • 70 Gandelman M, Jacobsen EN. Angew. Chem. Int. Ed. 2005; 44: 2393
  • 71 Wu H, Tian Z, Zhang L, Huang Y, Wang Y. Adv. Synth. Catal. 2012; 354: 2977
  • 72 Guo H.-M, Yuan T.-F, Niu H.-Y, Liu J.-Y, Mao R.-Z, Li D.-Y, Qu G.-R. Chem. Eur. J. 2011; 17: 4095
  • 73 Trost BM, Madsen R, Guile SG, Elia AE. H. Angew. Chem., Int. Ed. Engl. 1996; 35: 1569
  • 74 Trost BM, Madsen R, Guile SD, Brown B. J. Am. Chem. Soc. 2000; 122: 5947
  • 75 Amblard F, Nolan SP, Gillaizeau I, Agrofoglio LA. Tetrahedron Lett. 2003; 44: 9177
  • 76 Niu H.-Y, Du C, Xie M.-S, Wang Y, Zhang Q, Qu G.-R, Guo H.-M. Chem. Commun. 2015; 51: 3328
  • 77 Stanley LM, Hartwig JF. J. Am. Chem. Soc. 2009; 131: 8971
  • 78 Liang L, Xie M.-S, Qin T, Zhu M, Qu G.-R, Guo H.-M. Org. Lett. 2017; 19: 5212
    • 79a Xia C, Wang DC, Qu GR, Guo HM. Org. Chem. Front. 2021; 8: 2569
    • 79b Wang H, Yu L, Xie M, Wu J, Qu G, Ding K, Guo H. Chem. Eur. J. 2018; 24: 1425
  • 80 Thieme N, Breit B. Angew. Chem. Int. Ed. 2017; 56: 1520
  • 81 Liang L, Niu HY, Xie MS, Qu GR, Guo HM. Org. Chem. Front. 2018; 5: 3148
  • 82 Sun HL, Chen F, Xie MS, Guo HM, Qu GR, He YM, Fan QH. Org. Lett. 2016; 18: 2260
  • 83 Zhang Q, Ma BW, Wang QQ, Wang XX, Hu X, Xie MS, Qu GR, Guo HM. Org. Lett. 2014; 16: 2014
  • 84 Qin T, Li JP, Xie MS, Qu GR, Guo HM. J. Org. Chem. 2018; 83: 15512