Subscribe to RSS
DOI: 10.1055/a-2209-5251
Endothelzellverlust bei phaken Intraokularlinsen
Article in several languages: deutsch | English
Zusammenfassung
Obwohl die Sicherheit der phaken Intraokularlinsen (pIOLs) über eine bereits 70-jährige Entwicklungsgeschichte kontinuierlich verbessert wurde, können hohe Endothelzellverluste auch bei den aktuellen pIOL-Modellen auftreten. Die Studienergebnisse zeigen, dass die Entfernung einer pIOL zum Hornhautendothel eine entscheidende Rolle beim Endothelzellverlust spielt. Allein deswegen werden bei den Vorderkammerlinsen tendenziell höhere Endothelzellverluste beobachtet als bei den Hinterkammerlinsen. Eine ausreichende präoperative Vorderkammertiefe ist essenziell, zumindest bei den irisfixierten pIOLs, um eine sichere Distanz zum Endothel zu gewährleisten. Die Vorderkammer wird jedoch mit zunehmendem Alter flacher und es kann deswegen sinnvoll sein, das Patientenalter bei den Sicherheitskriterien mitzuberücksichtigen. Obwohl der Endothelzellverlust bei den aktuellen pIOL-Modellen i. d. R. gering ist, sind regelmäßige Kontrollen mit Messung der Endothelzelldichte aufgrund großer interindividueller Unterschiede bei den Patienten mit pIOLs nach wie vor unverzichtbar. Falls ein höherer Endothelzellverlust beobachtet wird als erwartet und die nachfolgenden Kontrollen die Tendenz bestätigen, soll die pIOL rechtzeitig explantiert werden. Hierbei ist die Endothelreserve individuell zu betrachten, indem man das Patientenalter, den physiologischen Endothelzellverlust sowie den Verlust durch weitere Operationen berücksichtigen sollte. Bei einer sorgfältigen Indikationsstellung und einer langfristigen Patientenbetreuung stellen die pIOLs nach wie vor eine sichere Behandlungsoption dar.
Schlüsselwörter
refraktive Chirurgie - phake Intraokularlinsen - pIOL - Endothelzellverlust - Endothel - HornhautPublication History
Received: 31 January 2023
Accepted: 06 November 2023
Article published online:
19 January 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1 Güell JL, Morral M, Kook D. et al. Phakic intraocular lenses part 1: historical overview, current models, selection criteria, and surgical techniques. J Cataract Refract Surg 2010; 36: 1976-1993
- 2 Yildirim Y, Çakmak S, Sucu ME. et al. Comparative study of small-incision lenticule extraction and phakic intraocular lens implantation for the correction of high myopia: 6-year results. J Cataract Refract Surg 2021; 47: 221-226
- 3 Sarver EJ, Sanders DR, Vukich JA. Image quality in myopic eyes corrected with laser in situ keratomileusis and phakic intraocular lens. J Refract Surg 2003; 19: 397-404
- 4 Packer KT, Vlasov A, Greenburg DL. et al. U.S. military implantable collamer lens surgical outcomes: 11-year retrospective review. J Cataract Refract Surg 2022; 48: 649-656
- 5 Auffarth GU, Apple DJ. [History of the development of intraocular lenses]. Ophthalmologe 2001; 98: 1017-1028
- 6 Javaloy J, Alió JL, Iradier MT. et al. Outcomes of ZB5M angle-supported anterior chamber phakic intraocular lenses at 12 years. J Refract Surg 2007; 23: 147-158
- 7 Martínez-Plaza E, López-Miguel A, Holgueras A. et al. Phakic intraocular lenses: Recent advances and innovations. Arch Soc Esp Oftalmol (Engl Ed) 2020; 95: 178-187
- 8 Plainer S, Wenzl E, Saalabian AA. et al. Long-term follow-up with I-CARE phakic IOLs. Br J Ophthalmol 2011; 95: 710-714
- 9 Kohnen T, LaFontaine L, Andrew R. Long-term safety follow-up of an anterior chamber angle-supported phakic intraocular lens. J Cataract Refract Surg 2017; 43: 1163-1170
- 10 Knorz MC, Lane SS, Holland SP. Angle-supported phakic intraocular lens for correction of moderate to high myopia: Three-year interim results in international multicenter studies. J Cataract Refract Surg 2011; 37: 469-480
- 11 Kohnen T, Maxwell A, Holland S. et al. Ten-year safety follow-up and post-explant analysis of an anterior chamber phakic IOL. J Cataract Refract Surg 2020; 46: 1457-1465
- 12 Worst JG, van der Veen G, Los LI. Refractive surgery for high myopia. The Worst-Fechner biconcave iris claw lens. Doc Ophthalmol 1990; 75: 335-341
- 13 Güell JL, Morral M, Gris O. et al. Five-year follow-up of 399 phakic Artisan-Verisyse implantation for myopia, hyperopia, and/or astigmatism. Ophthalmology 2008; 115: 1002-1012
- 14 Budo C, Hessloehl JC, Izak M. et al. Multicenter study of the Artisan phakic intraocular lens. J Cataract Refract Surg 2000; 26: 1163-1171
- 15 Tehrani M, Dick HB. Iris-fixated toric phakic intraocular lens: Three-year follow-up. J Cataract Refract Surg 2006; 32: 1301-1306
- 16 Benedetti S, Casamenti V, Benedetti M. Long-term endothelial changes in phakic eyes after Artisan intraocular lens implantation to correct myopia: five-year study. J Cataract Refract Surg 2007; 33: 784-790
- 17 Tahzib NG, Nuijts RM, Wu WY. et al. Long-term study of Artisan phakic intraocular lens implantation for the correction of moderate to high myopia: ten-year follow-up results. Ophthalmology 2007; 114: 1133-1142
- 18 Saxena R, Boekhoorn SS, Mulder PG. et al. Long-term follow-up of endothelial cell change after Artisan phakic intraocular lens implantation. Ophthalmology 2008; 115: 608-613.e1
- 19 Bouheraoua N, Bonnet C, Labbé A. et al. Iris-fixated phakic intraocular lens implantation to correct myopia and a predictive model of endothelial cell loss. J Cataract Refract Surg 2015; 41: 2450-2457
- 20 Qasem Q, Kirwan C, OʼKeefe M. 5-year prospective follow-up of Artisan phakic intraocular lenses for the correction of myopia, hyperopia and astigmatism. Ophthalmologica 2010; 224: 283-290
- 21 Jonker SMR, Berendschot T, Ronden AE. et al. Long-Term Endothelial Cell Loss in Patients with Artisan Myopia and Artisan Toric Phakic Intraocular Lenses: 5- and 10-Year Results. Ophthalmology 2018; 125: 486-494
- 22 Chebli S, Rabilloud M, Burillon C. et al. Corneal Endothelial Tolerance After Iris-Fixated Phakic Intraocular Lens Implantation: A Model to Predict Endothelial Cell Survival. Cornea 2018; 37: 591-595
- 23 Morral M, Güell JL, El Husseiny MA. et al. Paired-eye comparison of corneal endothelial cell counts after unilateral iris-claw phakic intraocular lens implantation. J Cataract Refract Surg 2016; 42: 117-126
- 24 Eldanasoury AM, Roozbahani M, Tolees S. et al. Long-Term Effect of Anterior Chamber Depth on Endothelial Cell Density in Patients With Iris-Fixated Phakic Intraocular Lenses. J Refract Surg 2019; 35: 493-500
- 25 Nemcova I, Pasta J, Hladikova K. et al. Myopic Correction with Iris-Fixated Phakic Intraocular Lenses: Twelve-Year Results. J Ophthalmol 2021; 2021: 7027793
- 26 Yaşa D, Ağca A. Verisyse versus Veriflex Phakic Intraocular Lenses: Refractive Outcomes and Endothelial Cell Density 5 Years after Surgery. J Ophthalmol 2018; 2018: 4210460
- 27 Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci 1997; 38: 779-782
- 28 van Rijn GA, Gaurisankar ZS, Ilgenfritz AP. et al. Middle- and long-term results after iris-fixated phakic intraocular lens implantation in myopic and hyperopic patients: a meta-analysis. J Cataract Refract Surg 2020; 46: 125-137
- 29 Muñoz G, Cardoner A, Albarrán-Diego C. et al. Iris-fixated toric phakic intraocular lens for myopic astigmatism. J Cataract Refract Surg 2012; 38: 1166-1175
- 30 Marta A, Leite J, Abreu AC. et al. Long-term results in patients with iris-fixated foldable phakic intraocular lenses for myopia and astigmatism. J Cataract Refract Surg 2022; 48: 993-998
- 31 Doors M, Cals DW, Berendschot TT. et al. Influence of anterior chamber morphometrics on endothelial cell changes after phakic intraocular lens implantation. J Cataract Refract Surg 2008; 34: 2110-2118
- 32 Castro de Luna G, Ramos-López D, Castaño Fernández AB. et al. Artiflex foldable lens for myopia correction results of 10 years of follow-up. Eye (Lond) 2019; 33: 1564-1569
- 33 Jonker SMR, Berendschot T, Ronden AE. et al. Five-Year Endothelial Cell Loss After Implantation With Artiflex Myopia and Artiflex Toric Phakic Intraocular Lenses. Am J Ophthalmol 2018; 194: 110-119
- 34 Monteiro T, Correia FF, Franqueira N. et al. Long-term efficacy and safety results after iris-fixated foldable phakic intraocular lens for myopia and astigmatism: 6-year follow-up. J Cataract Refract Surg 2021; 47: 211-220
- 35 Papa-Vettorazzi MR, Moura-Coelho N, Manero F. et al. Long-term efficacy and safety profiles of iris-fixated foldable anterior chamber phakic intraocular lens implantation in eyes with more than 10 years of follow-up. J Cataract Refract Surg 2022; 48: 987-992
- 36 Royo M, Jiménez Á, Martínez-Alberquilla I. et al. Eight-year follow-up of Artiflex and Artiflex Toric phakic intraocular lens. Eur J Ophthalmol 2022; 32: 2051-2058
- 37 Coullet J, Guëll JL, Fournié P. et al. Iris-supported phakic lenses (rigid vs. foldable version) for treating moderately high myopia: randomized paired eye comparison. Am J Ophthalmol 2006; 142: 909-916
- 38 Kwitko S, Zambon GM, Marafon SB. Artisan and artiflex phakic intraocular lenses for high ametropia: long-term results. Arch ClinExp Ophthalmol 2021; 3: 39-46
- 39 Sanders DR, Vukich JA, Doney K. et al. U.S. Food and Drug Administration clinical trial of the Implantable Contact Lens for moderate to high myopia. Ophthalmology 2003; 110: 255-266
- 40 Edelhauser HF, Sanders DR, Azar R. et al. Corneal endothelial assessment after ICL implantation. J Cataract Refract Surg 2004; 30: 576-583
- 41 Pesando PM, Ghiringhello MP, Di Meglio G. et al. Posterior chamber phakic intraocular lens (ICL) for hyperopia: ten-year follow-up. J Cataract Refract Surg 2007; 33: 1579-1584
- 42 Alfonso JF, Baamonde B, Fernández-Vega L. et al. Posterior chamber collagen copolymer phakic intraocular lenses to correct myopia: five-year follow-up. J Cataract Refract Surg 2011; 37: 873-880
- 43 Alfonso JF, Fernández-Vega-Cueto L, Alfonso-Bartolozzi B. et al. Five-Year Follow-up of Correction of Myopia: Posterior Chamber Phakic Intraocular Lens With a Central Port Design. J Refract Surg 2019; 35: 169-176
- 44 Choi JH, Lim DH, Nam SW. et al. Ten-year clinical outcomes after implantation of a posterior chamber phakic intraocular lens for myopia. J Cataract Refract Surg 2019; 45: 1555-1561
- 45 Fernández-Vega-Cueto L, Alfonso-Bartolozzi B, Lisa C. et al. Seven-year follow-up of posterior chamber phakic intraocular lens with central port design. Eye Vis (Lond) 2021; 8: 23
- 46 Guber I, Mouvet V, Bergin C. et al. Clinical Outcomes and Cataract Formation Rates in Eyes 10 Years After Posterior Phakic Lens Implantation for Myopia. JAMA Ophthalmol 2016; 134: 487-494
- 47 Moya T, Javaloy J, Montés-Micó R. et al. Implantable Collamer Lens for Myopia: Assessment 12 Years After Implantation. J Refract Surg 2015; 31: 548-556
- 48 Papa-Vettorazzi MR, Güell JL, Cruz-Rodriguez JB. et al. Long-term efficacy and safety profiles after posterior chamber phakic intraocular lens implantation in eyes with more than 10 years of follow-up. J Cataract Refract Surg 2022; 48: 813-818
- 49 Igarashi A, Shimizu K, Kamiya K. Eight-year follow-up of posterior chamber phakic intraocular lens implantation for moderate to high myopia. Am J Ophthalmol 2014; 157: 532-539.e1
- 50 Lee J, Kim Y, Park S. et al. Long-term clinical results of posterior chamber phakic intraocular lens implantation to correct myopia. Clin Exp Ophthalmol 2016; 44: 481-487
- 51 Nakamura T, Isogai N, Kojima T. et al. Posterior Chamber Phakic Intraocular Lens Implantation for the Correction of Myopia and Myopic Astigmatism: A Retrospective 10-Year Follow-up Study. Am J Ophthalmol 2019; 206: 1-10
- 52 Monteiro T, Pinto C, Franqueira N. et al. Efficacy and Safety After Toric Posterior Chamber Implantable Collamer Lens and Toric Iris-Fixated Foldable Phakic Intraocular Lens for Myopic Astigmatism. J Refract Surg 2022; 38: 339-347
- 53 Ghoreishi M, Kashfi A, Peyman M. et al. Comparison of Toric Implantable Collamer Lens and Toric Artiflex Phakic IOLs in Terms of Visual Outcome: a Paired Contralateral Eye Study. Am J Ophthalmol 2020; 219: 186-194
- 54 Awadein A, Habib AE. ICL versus Veriflex phakic IOL for treatment of moderately high myopia: randomized paired-eye comparison. J Refract Surg 2013; 29: 445-452
- 55 Shaaban YM, Badran TAF. Three-Year Effect of Phakic Intraocular Lenses on the Corneal Endothelial Cell Density. Clin Ophthalmol 2020; 14: 149-155
- 56 Karimian F, Baradaran-Rafii A, Hashemian SJ. et al. Comparison of three phakic intraocular lenses for correction of myopia. J Ophthalmic Vis Res 2014; 9: 427-433
- 57 Taneri S, Dick HB. Initial clinical outcomes of two different phakic posterior chamber IOLs for the correction of myopia and myopic astigmatism. Graefes Arch Clin Exp Ophthalmol 2022; 260: 1763-1772
- 58 Polytech Domilens GmbH. IPCL: Das refraktive One-Step-Verfahren. Accessed June 28, 2023 at: https://www.polytech-domilens.de/app/uploads/2022/01/ipcl_arztbroschuere.pdf
- 59 Schmid R, Luedtke H. A novel concept of correcting presbyopia: first clinical results with a phakic diffractive intraocular lens. Clin Ophthalmol 2020; 14: 2011-2019
- 60 Brar S, Gautam M, Sute SS. et al. Visual and Refractive Outcomes With the Eyecryl Phakic Toric IOL Versus the Visian Toric Implantable Collamer Lens: Results of a 2-Year Prospective Comparative Study. J Refract Surg 2021; 37: 7-15
- 61 Kohnen T, Maxwell WA, Holland S. Correction of Moderate to High Myopia with a Foldable, Angle-Supported Phakic Intraocular Lens: Results from a 5-Year Open-Label Trial. Ophthalmology 2016; 123: 1027-1035
- 62 Pop M, Payette Y. Initial results of endothelial cell counts after Artisan lens for phakic eyes: an evaluation of the United States Food and Drug Administration Ophtec Study. Ophthalmology 2004; 111: 309-317
- 63 Luft N, Hirnschall N, Schuschitz S. et al. Comparison of 4 specular microscopes in healthy eyes and eyes with cornea guttata or corneal grafts. Cornea 2015; 34: 381-386
- 64 MacRae S, Holladay JT, Hilmantel G. et al. Special Report: American Academy of Ophthalmology Task Force Recommendations for Specular Microscopy for Phakic Intraocular Lenses. Ophthalmology 2017; 124: 141-142
- 65 Shajari M, Scheffel M, Koss MJ. et al. Dependency of endothelial cell loss on anterior chamber depth within first 4 years after implantation of iris-supported phakic intraocular lenses to treat high myopia. J Cataract Refract Surg 2016; 42: 1562-1569
- 66 OPHTEC BV. Sicherheitsmitteilung (Field Safety Notice, FSN). Phake Intraokularlinsen Artisan und Artiflex (15.09.2021). Im Internet (Stand 16.01.2023): https://www.bfarm.de/SharedDocs/Kundeninfos/DE/11/2021/20671-21_kundeninfo_de.pdf?__blob=publicationFile
- 67 Niu L, Miao H, Han T. et al. Visual outcomes of Visian ICL implantation for high myopia in patients with shallow anterior chamber depth. BMC Ophthalmol 2019; 19: 121
- 68 Qian T, Du J, Ren R. et al. Vault-correlated efficacy and safety of Implantable Collamer Lens V4c implantation for myopia in patients with shallow anterior chamber depth. Ophthalmic Res 2023;
- 69 Yang W, Zhao J, Sun L. et al. Four-year observation of the changes in corneal endothelium cell density and correlated factors after Implantable Collamer Lens V4c implantation. Br J Ophthalmol 2021; 105: 625-630
- 70 Kommission Refraktive Chirurgie (KRC). Bewertung und Qualitätssicherung refraktiv-chirurgischer Eingriffe durch die DOG und den BVA – KRC-Empfehlungen (06/2022). Im Internet (Stand: 15.01.2023): http://bva.dog/krc/qualit.pdf
- 71 Richdale K, Bullimore MA, Zadnik K. Lens thickness with age and accommodation by optical coherence tomography. Ophthalmic Physiol Opt 2008; 28: 441-447
- 72 Tandogan T, Holzer MP, Choi CY. et al. Material Analysis of Spontaneously Subluxated Iris-Fixated Phakic Intraocular Lenses. J Refract Surg 2016; 32: 618-625
- 73 Packer M. Meta-analysis and review: effectiveness, safety, and central port design of the intraocular collamer lens. Clin Ophthalmol 2016; 10: 1059-1077
- 74 Di Y, Li Y, Luo Y. Prediction of Implantable Collamer Lens Vault Based on Preoperative Biometric Factors and Lens Parameters. J Refract Surg 2023; 39: 332-339
- 75 Cerpa Manito S, Sánchez Trancón A, Torrado Sierra O. et al. Biometric and ICL-related risk factors associated to sub-optimal vaults in eyes implanted with implantable collamer lenses. Eye Vis (Lond) 2021; 8: 26
- 76 Reinstein DZ, Lovisolo CF, Archer TJ. et al. Comparison of postoperative vault height predictability using white-to-white or sulcus diameter-based sizing for the visian implantable collamer lens. J Refract Surg 2013; 29: 30-35
- 77 Trancón AS, Manito SC, Sierra OT. et al. Determining vault size in implantable collamer lenses: preoperative anatomy and lens parameters. J Cataract Refract Surg 2020; 46: 728-736
- 78 Reinstein DZ, Archer TJ, Vida RS. et al. New Sizing Parameters and Model for Predicting Postoperative Vault for the Implantable Collamer Lens Posterior Chamber Phakic Intraocular Lens. J Refract Surg 2022; 38: 272-279
- 79 Nakamura T, Isogai N, Kojima T. et al. Optimization of implantable collamer lens sizing based on swept-source anterior segment optical coherence tomography. J Cataract Refract Surg 2020; 46: 742-748
- 80 Nakamura T, Nishida T, Isogai N. et al. Evaluation of implantable collamer lens sizing developed by reviewing the horizontal compression-vault coefficient. J Cataract Refract Surg 2023; 49: 525-530
- 81 Gaurisankar ZS, van Rijn GA, Cheng YYY. et al. Two-year results after combined phacoemulsification and iris-fixated phakic intraocular lens removal. Graefes Arch Clin Exp Ophthalmol 2022; 260: 1367-1375
- 82 de Vries NE, Tahzib NG, Budo CJ. et al. Results of cataract surgery after implantation of an iris-fixated phakic intraocular lens. J Cataract Refract Surg 2009; 35: 121-126
- 83 Vargas V, Marinho A, El Sayyad F. et al. Safety and visual outcomes following Iris-claw phakic intraocular lens bilensectomy. Eur J Ophthalmol 2021; 31: 1795-1801
- 84 Vargas V, Alió JL, Barraquer RI. et al. Safety and visual outcomes following posterior chamber phakic intraocular lens bilensectomy. Eye Vis (Lond) 2020; 7: 34
- 85 Yildirim TM, Auffarth GU, Son HS. et al. Dispersive viscosurgical devices demonstrate greater efficacy in protecting corneal endothelium in vitro. BMJ Open Ophthalmol 2019; 4: e000227
- 86 Storr-Paulsen A, Nørregaard JC, Farik G. et al. The influence of viscoelastic substances on the corneal endothelial cell population during cataract surgery: a prospective study of cohesive and dispersive viscoelastics. Acta Ophthalmol Scand 2007; 85: 183-187
- 87 Kim TY, Moon IH, Park SE. et al. Long-Term Follow-Up of Corneal Endothelial Cell Changes After Iris-Fixated Phakic Intraocular Lens Explantation. Cornea 2023; 42: 150-155
- 88 Yildirim TM, Khoramnia R, Son HS. et al. Reasons for explantation of phakic intraocular lenses and associated perioperative complications: cross-sectional explant registry analysis. BMC Ophthalmol 2021; 21: 80
- 89 Alió JL, Toffaha BT, Peña-Garcia P. et al. Phakic intraocular lens explantation: causes in 240 cases. J Refract Surg 2015; 31: 30-35
- 90 [Anonymous] Corneal Endothelial Photography: Three-year Revision. American Academy of Ophthalmology. Ophthalmology 1997; 104: 1360-1365
- 91 Ventura AC, Wälti R, Böhnke M. Corneal thickness and endothelial density before and after cataract surgery. Br J Ophthalmol 2001; 85: 18-20
- 92 Naujokaitis T, Auffarth GU, Łabuz G. et al. Diagnostic Techniques to Increase the Safety of Phakic Intraocular Lenses. Diagnostics (Basel) 2023; 13: 2503