Synthesis 2024; 56(05): 777-786
DOI: 10.1055/a-2206-6023
paper

Synthetic Access to 1,3-Butadiynes via Electro-redox Cuprous-Catalyzed Dehydrogenative Csp–Csp Homocoupling of Terminal Acetylenes

Murugan Krishnan
a   Electro Organic & Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Sivagangai district, Tamil Nadu, India
,
Murugavel Kathiresan
a   Electro Organic & Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Sivagangai district, Tamil Nadu, India
,
b   Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Sivagangai district, Tamil Nadu, India
› Author Affiliations
Mr. M.K. and Dr. M.K. would like to thank the Council of Scientific and Industrial Research (CSIR) for financial support through the Fundamental & Innovative Research in Science of Tomorrow (FIRST) project (MLP-1004). Dr. C.P. would like to acknowledge the Human Resources Development Group (HRDG) of CSIR for providing a Senior Research Associateship [13(9137-A)/2020-Pool].


Abstract

Herein, we disclose the oxidative homocoupling of terminal alkynes under electrochemically generated cuprous catalysis. The scope of this protocol was established by preparing an array of structurally and electronically different 1,3-butadiyne derivatives. Good synthetic yields, functional group tolerance, oxidant-free conditions, and no cross-selectivity are some of the intrinsic advantages of this methodology. The developed chemistry features the electro-redox formation of copper acetylide, an intermediate appropriate for the Csp–Csp coupling step. The chemical state of copper in the acetylide intermediate was found to be Cu(I), as confirmed by click trapping experiments, cyclic voltammetry, EPR spectroscopy, and XPS. A competition reaction to determine the reactivity of electronically dissimilar acetylenes revealed that the product ratio is rather dependent on the electronic nature of the alkynyl substituents. To highlight the synthetic value of the products, selected diynes were subjected to chemical diversification.

Supporting Information



Publication History

Received: 23 September 2023

Accepted after revision: 08 November 2023

Accepted Manuscript online:
08 November 2023

Article published online:
13 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lund H. J. Electrochem. Soc. 2002; 149: S21
  • 2 Dey A, Gunnoe TB, Stamenkovic VR. ACS Catal. 2020; 10: 13156
  • 3 Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
  • 4 Beil SB, Pollok D, Waldvogel SR. Angew. Chem. Int. Ed. 2021; 60: 14750
  • 5 Pletcher D, Green RA, Brown RC. D. Chem. Rev. 2018; 118: 4573
  • 6 Wang H, Xu K. Trans. Tianjin Univ. 2022; 28: 469
  • 7 Tang H.-T, Jia J.-S, Pan Y.-M. Org. Biomol. Chem. 2020; 18: 5315
  • 8 Inagi S. Sustainable and Functional Redox Chemistry. Royal Society of Chemistry; United Kingdom: 2022
  • 9 Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
  • 10 Zhu C, Ang NW, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
  • 11 Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Org. Biomol. Chem. 2022; 20: 5163
  • 12 Hatch CE, Chain WJ. ChemElectroChem 2023; 10: e202300140
  • 13 Meyer TK, Choi I, Tian C, Ackermann L. Chem 2020; 6: 2484
  • 14 Zhang W, Hong N, Song L, Fu N. Chem. Rec. 2021; 21: 2574
  • 15 Wang F, Stahl SS. Acc. Chem. Res. 2020; 53: 561
  • 16 Glaser C. Ber. Dtsch. Chem. Ges. 1869; 2: 422
  • 17 Glaser C. Ann. Chem. Pharm. 1870; 154: 137
  • 18 Siemsen P, Livingstone RC, Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
  • 19 Sindhu KS, Anilkumar G. RSC Adv. 2014; 4: 27867
  • 20 Takahashi A, Endo T, Nozoe S. Chem. Pharm. Bull. 1992; 40: 3181
  • 21 Goswami L, Gupta L, Paul S, Vijayaraghavan P, Bhattacharya AK. ChemMedChem 2023; 18: e202300013
  • 22 Levesque I, Néabo JR, Rondeau-Gagné S, Vigier-Carrière C, Daigle M, Morin J.-F. Chem. Sci. 2014; 5: 831
  • 23 Mitsudo K, Kamimoto N, Murakami H, Mandai H, Wakamiya A, Murata Y, Suga S. Org. Biomol. Chem. 2012; 10: 9562
  • 24 Seavill PW, Holt KB, Wilden JD. Green Chem. 2018; 20: 5474
  • 25 Seavill PW, Holt KB, Wilden JD. Faraday Discuss. 2019; 220: 269
  • 26 Ye X, Zhao P, Zhang S, Zhang Y, Wang Q, Shan C, Wojtas L, Guo H, Chen H, Shi X. Angew. Chem. Int. Ed. 2019; 58: 17226
  • 27 Doménech A, Leyva-Pérez A, Al-Resayes SI, Corma A. Electrochem. Commun. 2012; 19: 145
  • 28 Tamuli KJ, Narzary B, Saikia S, Bordoloi M. ACS Omega 2023; 8: 32635
  • 29 Ambrose B, Nasrin K, Arunkumar M, Kannan A, Sathish M, Kathiresan M. J. Energy Storage 2023; 61: 106714
  • 30 Ambrose B, Madhu R, Kannan A, Senthilvel S, Kathiresan M, Kundu S. Electrochim. Acta 2023; 439: 141714
  • 31 Adith RV, Madasamy K, Ebenezar J, Mohanapriya N, Kosame S, Ramesh BK, Kathiresan M, Kumar SS, Chandrasekaran N. Mol. Catal. 2021; 514: 111837
  • 32 Raheem AA, Gopi S, Kathiresan M, Praveen C. RSC Adv. 2019; 9: 1895
  • 33 Vadivelu M, Sampath S, Muthu K, Karthikeyan K, Praveen C. J. Org. Chem. 2019; 84: 13636
  • 34 Sampath S, Vadivelu M, Raheem AA, Indirajith R, Parthasarathy K, Karthikeyan K, Praveen C. Ind. Eng. Chem. Res. 2022; 61: 9552
  • 35 Raheem AA, Thanagasamy P, Sathish M, Praveen C. Nanoscale Adv. 2019; 1: 3177
  • 36 Krishnan M, Kathiresan M, Praveen C. Eur. J. Org. Chem. 2023; 26: e202201405
  • 37 Mamyrbekova AK, Mamitova AD, Mamyrbekova AK. Russ. J. Phys. Chem. A 2016; 90: 1265
  • 38 Woldu AR, Shah AH, Hu H, Cahen D, Zhang X, He T. Int. J. Energy Res. 2020; 44: 548
  • 39 Yin K, Li C, Li J, Jia X. Green Chem. 2011; 13: 591
  • 40 Jia X, Yin K, Li C, Li J, Bian H. Green Chem. 2011; 13: 2175
  • 41 Niu X, Li C, Li J, Jia X. Tetrahedron Lett. 2012; 53: 5559
  • 42 Zhu Y, Shao P, Hu L, Sun C, Li J, Feng X, Wang B. J. Am. Chem. Soc. 2021; 143: 7897
  • 43 Batsanov AS, Collings JC, Fairlamb IF. S, Holland JP, Howard JA. K, Lin Z, Marder TB, Parsons AC, Ward RM, Zhu J. J. Org. Chem. 2005; 70: 703
  • 44 Seavill PW, Holt KB, Wilden JD. RSC Adv. 2019; 9: 29300
  • 45 Theunissen C, Lecomte M, Jouvin K, Laouiti A, Guissart C, Heimburger J, Loire E, Evano G. Synthesis 2014; 46: 1157
  • 46 Vilhelmsen MH, Jensen J, Tortzen CG, Nielsen MB. Eur. J. Org. Chem. 2013; 701
  • 47 Díez-González S. Adv. Organomet. Chem. 2016; 66: 93
  • 48 Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
  • 49 Worrell BT, Malik JA, Fokin VV. Science 2013; 340: 457
  • 50 Shao C, Cheng G, Su D, Xu J, Wang X, Hu Y. Adv. Synth. Catal. 2010; 352: 1587
  • 51 Zhang R, Hao X, Li X, Zhou Z, Sun J, Cao R. Cryst. Growth Des. 2015; 15: 2505
  • 52 McNulty J, Keskar K, Vemula R. Chem. Eur. J. 2011; 17: 14727
  • 53 McNulty J, Keskar K. Eur. J. Org. Chem. 2012; 5462
  • 54 Sladkov AM, Ukhin LY. Russ. Chem. Rev. 1968; 37: 748
  • 55 Bai R, Zhang G, Yi H, Huang Z, Qi X, Liu C, Miller JT, Kropf AJ, Bunel EE, Lan Y, Lei A. J. Am. Chem. Soc. 2014; 136: 16760
  • 56 Zhang S, Zhao L. Nat. Commun. 2019; 10: 4848
  • 57 Gao D, Yang G, Li J, Zhang J, Zhang J, Xue D. J. Phys. Chem. C 2010; 114: 18347
  • 58 Sagadevan A, Charpe VP, Hwang KC. Catal. Sci. Technol. 2016; 6: 7688
  • 59 Shi W, Lei A. Tetrahedron Lett. 2014; 55: 2763
  • 60 Gupta S, Agarwal PK, Saifuddin M, Kundu B. Tetrahedron Lett. 2011; 52: 5752
  • 61 Tang J.-L, Ming L, Zhao X.-M. J. Heterocycl. Chem. 2016; 53: 1367
  • 62 Li JJ. Glaser Coupling . In Name Reactions . Springer; Cham: 2021
  • 63 Liu J, Zhu Y, Luo J, Zhu Z, Zhao L, Zeng X, Li D, Chen J, Lan X. Molecules 2023; 28: 5083
  • 64 Zhu Y, Shi Y. Org. Biomol. Chem. 2013; 11: 7451
  • 65 Guo M, Chen B, Lv M, Zhou X, Wen Y, Shen X. Molecules 2016; 21: 606
  • 66 Chutia R, Chetia B. New J. Chem. 2020; 44: 18199
  • 67 Arakawa Y, Nakajima S, Ishige R, Uchimura M, Kang S, Konishi G.-i, Watanabe J. J. Mater. Chem. 2012; 22: 8394
  • 68 Li H, Yang M, Zhang X, Yan L, Li J, Qi Y. New J. Chem. 2013; 37: 1343
  • 69 Tang S, Li L, Ren X, Li J, Yang G, Li H, Yuan B. Green Chem. 2019; 21: 2899
  • 70 Zou J, Wen D, Zhao Y. Dalton Trans. 2023; 52: 731
  • 71 Chetia M, Ali AA, Bordoloi A, Sarma D. J. Chem. Sci. 2017; 129: 1211