Subscribe to RSS
DOI: 10.1055/a-2202-5282
First Trimester Contingent Screening for Aneuploidies with Cell-Free Fetal DNA in Singleton Pregnancies – a Swiss Single Centre Experience
Ersttrimesterscreening auf Aneuploidien mittels zellfreier fetaler DNA bei Einlingsschwangerschaften – Erfahrungen aus einem schweizerischen Level-3-ReferenzzentrumAbstract
Introduction
Switzerland was amongst the first countries to offer cell-free fetal DNA (cffDNA) testing covered by the health insurance to pregnant women with a risk ≥ 1:1000 for trisomies at first trimester combined screening (FTCS). The aim of this study is to evaluate the implementation of this contingent model in a single tertiary referral centre and its effect on gestational age at diagnosing trisomy 21.
Materials and Methods
Between July 2015 and December 2020 all singleton pregnancies at 11–14 weeks of gestation without major fetal malformation were included and stratified according to their risk at FTCS. Statistical analysis was performed by GraphPad Version 9.1 for Windows.
Results
4424 pregnancies were included. Of 166 (3.8%) pregnancies with a NT ≥ 3.5 mm and/or a risk ≥ 1:10 at FCTS, 130 (78.3%) opted for direct invasive testing. 803 (18.2%) pregnancies had an intermediate risk, 692 (86.2%) of them opted for cffDNA first. 3455 (78.1%) pregnancies had a risk < 1:1000. 63 fetuses were diagnosed with trisomy 21, 47 (74.6%) directly by invasive procedures after FTCS, 16 (25.4%) by cffDNA first.
Conclusions
Most women choose cffDNA or invasive testing as second tier according to national guidelines. Despite the delay associated with cffDNA testing after FCTS, 75% of all trisomy 21 are still diagnosed in the first trimester with this contingent screening model.
Zusammenfassung
Einleitung
Die Schweiz war eines der ersten Länder, das schwangeren Frauen mit einem ≥ 1:1000-Risiko für Trisomien von den Krankenkassen vergütete cffDNA-Tests (cffDNA: zellfreie fetal DNA) nach dem kombinierten Ersttrimesterscreening (FTCS) angeboten hat. Ziel dieser Studie war es, die Umsetzung dieses Screeningmodells in einem Level-3-Referenzzentrum und die Auswirkungen auf das Schwangerschaftsalter bei der Trisomie-21-Diagnose auszuwerten.
Material und Methoden
Zwischen Juli 2015 und Dezember 2020 wurden alle Einlingsschwangerschaften ohne fetale Fehlbildungen in den Schwangerschaftswochen 11–14 in die Studie aufgenommen und gemäß ihrem Risiko beim FTCS in Risikogruppen unterteilt. Die statistische Analyse wurde mit GraphPad Version 9.1 für Windows durchgeführt.
Ergebnisse
Insgesamt wurden 4424 Schwangerschaften in die Studie eingeschlossen. Von 166 (3,8%) Schwangerschaften mit einer Nackentransparenz (NT) von ≥ 3,5 mm und/oder einem Risiko von ≥ 1 : 10 beim FTCS entschieden sich 130 (78,3%) für direkte invasive Testmethoden. Bei 803 (18,2%) Schwangerschaften wurde das Risiko als intermediär eingestuft, und 692 (86,2%) der Schwangeren entschieden sich, erst einen cffDNA-Test durchzuführen. Bei 3455 (78,1%) Schwangerschaften war das Risiko < 1 : 1000. 63 Feten wurden mit Trisomie 21 diagnostiziert, davon 47 (74,6%) direkt durch invasive Eingriffe nach dem FTCS und 16 (25,4%) erst mit cffDNA.
Schlussfolgerungen
Die meisten Frauen wählten cffDNA oder eine invasive Testmethode als Folgeuntersuchung gemäß den nationalen Richtlinien. Obwohl eine cffDNA-Analyse nach dem FCTS zu Verzögerungen führt, werden mit diesem Kontingent-Screening immer noch 75% aller Fälle mit Trisomie 21 im 1. Trimester diagnostiziert.
Keywords
first trimester screening - trisomies - cell-free fetal DNA - non-invasive prenatal testingSchlüsselwörter
Ersttrimesterscreening - Trisomien - cell-free fetal DNA - nicht invasive PränataldiagnostikPublication History
Received: 15 April 2023
Accepted after revision: 31 October 2023
Article published online:
03 January 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lo YM, Corbetta N, Chamberlain PF. et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997; 350: 485-487 DOI: 10.1016/S0140-6736(97)02174-0. (PMID: 9274585)
- 2 Lo YM, Tein MS, Lau TK. et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 1998; 62: 768-775 DOI: 10.1086/301800. (PMID: 9529358)
- 3 Wald NJ, Cuckle HS, Densem JW. et al. Maternal serum screening for Down’s syndrome in early pregnancy. BMJ 1988; 297: 883-887 DOI: 10.1136/bmj.297.6653.883. (PMID: 2460174)
- 4 Wald NJ, Kennard A, Hackshaw A. et al. Antenatal screening for Down’s syndrome. J Med Screen 1997; 4: 181-246 DOI: 10.1177/096914139700400402. (PMID: 9494915)
- 5 Bindra R, Heath V, Liao A. et al. One-stop clinic for assessment of risk for trisomy 21 at 11–14 weeks: a prospective study of 15030 pregnancies. Ultrasound Obstet Gynecol 2002; 20: 219-225 DOI: 10.1046/j.1469-0705.2002.00808.x. (PMID: 12230441)
- 6 Nicolaides KH, Azar G, Byrne D. et al. Fetal nuchal translucency: ultrasound screening for chromosomal defects in first trimester of pregnancy. BMJ 1992; 304: 867-869 DOI: 10.1136/bmj.304.6831.867. (PMID: 1392745)
- 7 De Biasio P, Siccardi M, Volpe G. et al. First-trimester screening for Down syndrome using nuchal translucency measurement with free beta-hCG and PAPP-A between 10 and 13 weeks of pregnancy – the combined test. Prenat Diagn 1999; 19: 360-363
- 8 Santorum M, Wright D, Syngelaki A. et al. Accuracy of first-trimester combined test in screening for trisomies 21, 18 and 13. Ultrasound Obstet Gynecol 2017; 49: 714-720 DOI: 10.1002/uog.17283. (PMID: 27549925)
- 9 Gil MM, Accurti V, Santacruz B. et al. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol 2017; 50: 302-314 DOI: 10.1002/uog.17484. (PMID: 28397325)
- 10 Bianchi DW, Parker RL, Wenthworth J. et al. DNA sequencing versus standard prenatal aneuploidy screening. N Engl J Med 2014; 370: 799-808 DOI: 10.1056/NEJMoa1311037. (PMID: 24571752)
- 11 Norton ME, Jacobsson B, Swamy GK. et al. Cell-free DNA analysis for noninvasive examination of trisomy. N Engl J Med 2015; 372: 1589-1597 DOI: 10.1056/NEJMoa1407349. (PMID: 25830321)
- 12 Gil MM, Galeva S, Jani J. et al. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: update of The Fetal Medicine Foundation results and meta-analysis. Ultrasound Obstet Gynecol 2019; 53: 734-742 DOI: 10.1002/uog.20284. (PMID: 31165549)
- 13 Committee on Practice Bulletins – Obstetrics, Committee on Genetics, Society for Maternal-Fetal Medicine. Practice Bulletin No. 163: Screening for Fetal Aneuploidy. Obstet Gynecol 2016; 127: e123-e137 DOI: 10.1097/AOG.0000000000001406. (PMID: 26938574)
- 14 Benn P, Borrell A, Chiu RW. et al. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat Diagn 2015; 35: 725-734 DOI: 10.1002/pd.4608. (PMID: 25970088)
- 15 Allyse M, Minear MA, Berson E. et al. Non-invasive prenatal testing: a review of international implementation and challenges. Int J Womens Health 2015; 7: 113-126 DOI: 10.2147/IJWH.S67124. (PMID: 25653560)
- 16 Nicolaides KH, Wright D, Poon LC. et al. First-trimester contingent screening for trisomy 21 by biomarkers and maternal blood cell-free DNA testing. Ultrasound Obstet Gynecol 2013; 42: 41-50 DOI: 10.1002/uog.12511. (PMID: 23744626)
- 17 Walker BS, Nelson RE, Jackson BR. et al. A Cost-Effectiveness Analysis of First Trimester Non-Invasive Prenatal Screening for Fetal Trisomies in the United States. PLoS One 2015; 10: e0131402 DOI: 10.1371/journal.pone.0131402. (PMID: 26133556)
- 18 Fokstuen S, Tercanli S, Burkhardt T. Arbeitsgruppe der Akademie für feto-maternale Medizin und Schweizerische Gesellschaft für Medizinische Genetik. et al. Expertenbrief No 45: Pränatales genetisches Screening: Neues Modell. SGGG 2015 Accessed September 01, 2022 at: https://www.sggg.ch/fileadmin/user_upload/Formulardaten/EB45_Praenatales_genetisches_Screening_2016.pdf
- 19 Ochsenbein N, Burkhardt T, Raio L. et al. Expertenbrief No 52: Pränatale nicht-invasive Risikoabschätzung fetaler Aneuploidien. SGGG 2018 Accessed September 01, 2022 at: https://www.sggg.ch/fileadmin/user_upload/Formulardaten/52_def_Praenatale_nicht-invasive_Risikoabschaetzung_fetaler_Aneuploidien.pdf
- 20 Nicolaides KH. Prediction of risk, Risk for trisomies at 11–13 weeks. London, The Fetal Medicine Foundation 2022 Accessed September 01, 2022 at: https://fetalmedicine.org/research/assess/trisomies
- 21 Souka AP, Von Kaisenberg CS, Hyett JA. et al. Increased nuchal translucency with normal karyotype. Am J Obstet Gynecol 2005; 192: 1005-1021 DOI: 10.1016/j.ajog.2004.12.093. (PMID: 15846173)
- 22 Maymon R, Dreazen E, Rozinsky S. et al. Comparison of nuchal translucency measurement and second-trimester triple serum screening in twin versus singleton pregnancies. Prenat Diagn 1999; 19: 727-731 DOI: 10.1002/(sici)1097-0223(199908)19:8<727::aid-pd631>3.0.co;2-t. (PMID: 10451516)
- 23 Boon EMJ, Faas BHW. Benefits and limitations of whole genome versus targeted approaches for noninvaisive prenatal testing for fetal aneuploidies. Prenat Diagn 2013; 33: 563-568 DOI: 10.1002/pd.4111. (PMID: 23613171)
- 24 Gadsbøll K, Petersen OB, Gatinois V. et al. Current use of noninvasive prenatal testing in Europe, Australia and the USA: a graphical presentation. Acta Obstet Gynecol Scand 2020; 99: 722-730 DOI: 10.1111/aogs.13841. (PMID: 32176318)
- 25 Minear MA, Lewis C, Pradhan S. et al. Global perspectives on clinical adoption of NIPT. Prenat Diagn 2015; 35: 959-967 DOI: 10.1002/pd.4637. (PMID: 26085345)
- 26 Trottmann F, Mollet AE, Amylidi-Mohr S. et al. Integrating Combined First Trimester Screening for Preeclampsia into Routine Ultrasound Examination. Geburtshilfe Frauenheilkd 2022; 82: 333-340 DOI: 10.1055/a-1534-2599. (PMID: 35250382)
- 27 Lou S, Petersen OB, Jørgensen FS. Danish Cytogenetic Central Registry Study Group. et al. National screening guidelines and developments in prenatal diagnoses and live births of Down syndrome in 1973–2016 in Denmark. Acta Obstet Gynecol Scand 2018; 97: 195-203 DOI: 10.1111/aogs.13273. (PMID: 29194566)
- 28 Bilardo CM. The implementation of non-invasive prenatal testing (NIPT) in the Netherlands. J Perinat Med 2021; 49: 941-944 DOI: 10.1515/jpm-2021-0290. (PMID: 34252999)
- 29 Oepkes D, Page-Christiaens GC, Bax CJ. et al. Trial by Dutch laboratories for evaluation of non-invasive prenatal testing. Part I-clinical impact. Prenat Diagn 2016; 36: 1083-1090 DOI: 10.1002/pd.4945. (PMID: 27750376)
- 30 Christiaens L, Chitty LS, Langlois S. Current controversies in prenatal diagnosis: Expanded NIPT that includes conditions other than trisomies 13, 18, and 21 should be offered. Prenat Diagn 2021; 41: 1316-1323 DOI: 10.1002/pd.5943. (PMID: 33829520)
- 31 Eiben B, Glaubitz R, Winkler T. et al. First-Trimester Screening in Germany After the Introduction of NIPT as a General Health Insurance Benefit. Ultraschall Med 2023; 44: 327-328 DOI: 10.1055/a-2028-8108. (PMID: 36746395)
- 32 Reinsperger I. Regulation and financing of prenatal screening and diagnostic examinations for fetal anomalies in selected European countries, AIHTA Policy Brief 012 2022. 2023 Accessed July 01, 2023 at: https://eprints.aihta.at/
- 33 Shear MA, Swanson K, Garg R. et al. A systematic review and meta-analysis of cell-free DNA testing for detection of fetal sex chromosome aneuploidy. Prenat Diagn 2023; 43: 133-143 DOI: 10.1002/pd.6298. (PMID: 36588186)
- 34 Gil MM, Revello R, Poon LC. et al. Clinical implementation of routine screening for fetal trisomies in the US NHS: cell-free DNA test contingent on results from first-trimester combined test. Ultrasound Obstet Gynecol 2016; 47: 45-52 DOI: 10.1002/uog.15783. (PMID: 26498918)