Sprache · Stimme · Gehör 2024; 48(01): 22-31
DOI: 10.1055/a-2195-4886
Schwerpunktthema

Aktuelle Trends und Entwicklungen bei der Cochlea-Implantat-Versorgung

Current Trends and Developments in Cochlear Implantation
Joachim Müller
,
Carmen Molenda
,
Daniel Polterauer

Die Cochlea-Implantation hat sich als Goldstandard der Hörrehabilitation für Patienten mit hochgradigem sensorineuralen Hörverlust etabliert und ist heute eine unverzichtbare Methode für diese Patienten. Angepasst an rasante Entwicklungen und die sich ergebenden vielfältigen Indikationserweiterungen, haben sich folgerichtig die Implantationsprinzipien subtil verfeinert. Diese Übersicht fasst aktuelle Entwicklungen zusammen, denen im klinischen Alltag wachsende Aufmerksamkeit und eine zunehmende Anwendung zuteil wird.

Abstract

Cochlear implantation is the gold standard of hearing rehabilitation for patients with severe to profound sensorineural hearing loss. Cochlear Implants (CI) are nowadays essential for these patients. Adapted to rapid developments and the resulting expansion of indications, the implantation principles have consequently been subtly refined and further developed. For the established indications like bimodal or bilateral CI care and CI for single-sided deafness, the detailed developments that raised primarily from the observations that residual hearing after the procedure can be preserved. This also played a significant role in the diversification of Cochlear Implantation. Since the audiological criteria for cochlear implants have also been expanded due to the results achieved with the CI compared to optimal fitted hearing aids, CI´s are also suitable for patients with, in some cases, substantial, residual hearing. This current overview summarizes developments that are receiving more attention and increasing application in everyday clinical practice.



Publication History

Article published online:
11 March 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Lenarz T, Buechner A, Illg A. Cochlea-Implantation: Konzept, Therapieergebnisse und Lebensqualität. Laryngo-Rhino-Otologie 2022; 101: 36-78 DOI: 10.1055/a-1731-9321.
  • 2 DGHNO. Cochlea-Implantat(CI)-Versorgung. Bonn: 2021
  • 3 AWMF Leitlinienregister. 2023 Stand: 26.11.2023 https://register.awmf.org/de/leitlinien/detail/017-071
  • 4 WHO. Deafness and hearing loss. 2023 Stand: 26.11.2023 https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
  • 5 Eshraghi AA, Nazarian R, Telischi FF. et al. The cochlear implant: Historical aspects and future prospects. Anat Rec (Hoboken) 2012; 295: 1967-1980
  • 6 Mudry A, Mills M. The early history of the cochlear implant: a retrospective. JAMA Otolaryngol Head Neck Surg 2013; 139: 446-453
  • 7 Müller J. Technical devices for hearing-impaired individuals: cochlear implants and brain stem implants - developments of the last decade. GMS Curr Top Otorhinolaryngol Head Neck Surg 2005; 4: Doc04
  • 8 Dhanasingh A, Hochmair I. EAS-Combined electric and acoustic stimulation. Acta Otolaryngol 2021; 141: 22-62
  • 9 Kiefer J, Tillein J, Ilberg C. et al. Fundamental aspects and first results of the clinical application of combined electric and acoustig stimulation of the auditoriy system. J Spec Education Rehabil 2004; 5
  • 10 von Ilberg C, Kiefer J, Tillein J. et al. Electric-acoustic stimulation of the auditory system. New technology for severe hearing loss. . ORL J Otorhinolaryngol Relat Spec 1999; 61: 334-340
  • 11 Zahnert T, Aschendorff A, Baumann U. et al. S2k-Leitlinie: Cochlea-Implantat Versorgung (Langfassung). AWMF. 2020 Stand: 26.11.2023 https://www.awmf.org/leitlinien/detail/ll/017-071.html
  • 12 Spiegel JL, Polterauer D, Hempel J-M. et al. Variation of the cochlear anatomy and cochlea duct length: analysis with a new tablet-based software. Eur Arch Otorhinolaryngol 2022; 279: 1851-1861
  • 13 Weber L, Kwok P, Picou EM. et al. Vermessung der Cochlea mittels eines Tablet-basierten Softwarepakets: Einfluss der Bildgebungsmodalität und des Untersucherhintergrunds. HNO 2022; 70: 769-777
  • 14 OTOPLAN - Patientenspezifische, otologische Planungssoftware. 2023 Stand: 26.11.2023 https://www.cascination.com/de/otoplan
  • 15 Alexiades G, Dhanasingh A, Jolly C. Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol 2015; 36: 904-907
  • 16 Li H, Rajan GP, Shaw J. et al. A Synchrotron and Micro-CT Study of the Human Endolymphatic Duct System: Is Meniere’s Disease Caused by an Acute Endolymph Backflow?. Front Surg 2021; 8: 662530
  • 17 Li H, Agrawal S, Rohani SA. et al. Unlocking the human inner ear for therapeutic intervention. Sci Rep 2022; 12: 18508
  • 18 Schurzig D, Pietsch M, Erfurt P. et al. A cochlear scaling model for accurate anatomy evaluation and frequency allocation in cochlear implantation. Hear Res 2021; 403: 108166
  • 19 Lenarz T. Cochlear implant – state of the art. GMS Curr Top Otorhinolaryngol Head Neck Surg 2018; 16: Doc04
  • 20 Polterauer D, Mandruzzato G, Neuling M. et al. Intra-operative test electrode and electrical auditory brainstem response after preoperative assessment in cochlear implant candidacy. Current Directions in Biomedical Engineering 2023; 9: 725-728
  • 21 Radeloff A, Shehata-Dieler W, Scherzed A. et al. Intraoperative monitoring using cochlear microphonics in cochlear implant patients with residual hearing. Otol Neurotol 2012; 33: 348-354
  • 22 Fernandez NM, De Paula Vernetta C, Garrido LC. et al. Electrically Evoked Auditory Brainstem Response over Round Window by Bipolar Stimulation. The Journal of International Advanced Otology 2019; 14: 370-374
  • 23 Anwar A, Singleton A, Fang Y. et al. The value of intraoperative EABRs in auditory brainstem implantation. International Journal of Pediatric Otorhinolaryngology 2017; 101: 158-163
  • 24 Pau H, Gibson WP, Sanli H. Trans-tympanic electric auditory brainstem response (TT-EABR): the importance of the positioning of the stimulating electrode. Cochlear implants international 2006; 7: 183-187
  • 25 Polterauer D, Mandruzzato G, Neuling M. et al. Evaluation of auditory pathway excitability using a pre-operative trans-tympanic electrically evoked auditory brainstem response under local anesthesia in cochlear implant candidates. International Journal of Audiology 2022; 1-11
  • 26 Polak M, Eshraghi AA, Nehme O. et al. Evaluation of hearing and auditory nerve function by combining ABR, DPOAE and eABR tests into a single recording session. Journal of neuroscience methods 2004; 134: 141-149
  • 27 Gibson WP. The Clinical Uses of Electrocochleography. Front Neurosci 2017; 11: 274
  • 28 Gibson W, Sanli H. The role of round window electrophysiological techniques in the selection of children for cochlear implants. Updates in Cochlear Implantation. Karger Publishers; 2000: 148-151
  • 29 Kileny PR, Zwolan TA, Zimmerman-Phillips S. et al. Electrically evoked auditory brain-stem response in pediatric patients with cochlear implants. Arch Otolaryngol Head Neck Surg 1994; 120: 1083-1090
  • 30 Kileny PR, Kim AH, Wiet RM. et al. The predictive value of transtympanic promontory EABR in congenital temporal bone malformations. Cochlear implants international 2010; 11: 181-186
  • 31 Causon A, O’Driscoll M, Stapleton E. et al. Extracochlear Stimulation of Electrically Evoked Auditory Brainstem Responses (eABRs) Remains the Preferred Pre-implant Auditory Nerve Function Test in an Assessor-blinded Comparison. Otology Neurotology 2019; 40: 47-55
  • 32 Dutt SN, Kumar A. The Methodology and Electro-physiological Classification of Pre-operative Trans-tympanic Electrically-Evoked Auditory Brainstem Response (TT-EABR). Indian Journal of Otolaryngology and Head & Neck Surgery 2019.
  • 33 Sennaroğlu L, Colletti V, Lenarz T. et al. Consensus statement: Long-term results of ABI in children with complex inner ear malformations and decision making between CI and ABI. Cochlear Implants International 2016; 17: 163-171
  • 34 Scheper V, Hessler R, Hütten M. et al. Local inner ear application of dexamethasone in cochlear implant models is safe for auditory neurons and increases the neuroprotective effect of chronic electrical stimulation. PLoS One 2017; 12: e0183820
  • 35 Nishio S-Y, Usami S-I. Deafness gene variations in a 1120 nonsyndromic hearing loss cohort: molecular epidemiology and deafness mutation spectrum of patients in Japan. Ann Otol Rhinol Laryngol 2015; 124 (Suppl. 01) 49S-60S
  • 36 Usami S-I, Nishio S-Y, Moteki H. et al. Cochlear Implantation From the Perspective of Genetic Background. Anat Rec (Hoboken) 2020; 303: 563-593
  • 37 A Comprehensive Study on the Etiology of Patients Receiving Cochlear Implantation With Special Emphasis on Genetic Epidemiology - PubMed. Stand: 26.11.2023 https://pubmed-ncbi-nlm-nih-gov.emedien.ub.uni-muenchen.de/26756145/
  • 38 Topsakal V, Agrawal S, Atlas M. et al. Minimally Traumatic Cochlear Implant Surgery: Expert Opinion in 2010 and 2020. J Pers Med 2022; 12: 1551
  • 39 Fitzgerald O’Connor E, Fitzgerald O’Connor A. Hearing preservation surgery: current opinions. Adv Otorhinolaryngol 2010; 67: 108-115
  • 40 Bruce IA, Todt I. Hearing Preservation Cochlear Implant Surgery. Adv Otorhinolaryngol 2018; 81: 66-73
  • 41 Rajan G, Tavora-Vieira D, Baumgartner W-D. et al. Hearing preservation cochlear implantation in children: The HEARRING Group consensus and practice guide. Cochlear Implants Int 2018; 19: 1-13
  • 42 Frendø M, Frithioff A, Konge L. et al. Cochlear Implant Surgery: Virtual Reality Simulation Training and Transfer of Skills to Cadaver Dissection-A Randomized, Controlled Trial. J Int Adv Otol 2022; 18: 219-224
  • 43 Suhling M-C, Majdani O, Salcher R. et al. The Impact of Electrode Array Length on Hearing Preservation in Cochlear Implantation. Otol Neurotol 2016; 37: 1006-1015
  • 44 Dhanasingh A, Jolly C. An overview of cochlear implant electrode array designs. Hear Res 2017; 356: 93-103
  • 45 Dhanasingh A, Hochmair I. CI in single-sided deafness. Acta Otolaryngol 2021; 141: 82-105
  • 46 Jolly C, Garnham C, Mirzadeh H. et al. Electrode features for hearing preservation and drug delivery strategies. Adv Otorhinolaryngol 2010; 67: 28-42
  • 47 Van de Heyning P, Adunka O, Arauz SL. et al. Standards of practice in the field of hearing implants. Cochlear Implants Int 2013; 14 (Suppl. 02) S1-5
  • 48 Caversaccio M, Wimmer W, Anso J. et al. Robotic middle ear access for cochlear implantation: First in man. PLoS One 2019; 14: e0220543
  • 49 Högerle C, Englhard A, Simon F. et al. Cochlear Implant Electrode Tip Fold-Over: Our Experience With Long and Flexible Electrode. Otol Neurotol 2022; 43: 64-71
  • 50 Carlson ML, Driscoll CLW, Gifford RH. et al. Implications of minimizing trauma during conventional cochlear implantation. Otol Neurotol 2011; 32: 962-968
  • 51 Huarte RM, Roland JT. Toward hearing preservation in cochlear implant surgery. Curr Opin Otolaryngol Head Neck Surg 2014; 22: 349-352
  • 52 Dhanasingh A. Research software in cochlear duct length estimation, Greenwood frequency mapping and CI electrode array length simulation. World J Otorhinolaryngol Head Neck Surg 2021; 7: 17-22
  • 53 Timm ME, Majdani O, Weller T. et al. Patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges. PLOS ONE 2018; 13: e0206435
  • 54 Alothman N, Al-Muhawas F, Badghaish R. et al. Cochlear Implantation in Pediatrics: The Effect of Cochlear Coverage. Journal of Personalized Medicine 2023; 13: 562
  • 55 Helms J, Müller J, Schön F. et al. Evaluation of performance with the COMBI40 cochlear implant in adults: a multicentric clinical study. ORL J Otorhinolaryngol Relat Spec 1997; 59: 23-35
  • 56 Hüttenbrink K-B, Zahnert T, Jolly C. et al. Movements of cochlear implant electrodes inside the cochlea during insertion: an x-ray microscopy study. Otol Neurotol 2002; 23: 187-191
  • 57 Sierra C, Calderón M, Bárcena E. et al. Preservation of Residual Hearing After Cochlear Implant Surgery With Deep Insertion Electrode Arrays. Otol Neurotol 2019; 40: e373-e380
  • 58 Rajan GP, Kontorinis G, Kuthubutheen J. The effects of insertion speed on inner ear function during cochlear implantation: a comparison study. Audiol Neurootol 2013; 18: 17-22
  • 59 HEARO – Robotergestützte Cochlea Implantation. 2023 Stand: 26.11.2023 https://www.cascination.com/de/hearo
  • 60 Ansó J, Scheidegger O, Wimmer W. et al. Neuromonitoring During Robotic Cochlear Implantation: Initial Clinical Experience. Ann Biomed Eng 2018; 46: 1568-1581
  • 61 Caversaccio M, Gavaghan K, Wimmer W. et al. Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Otolaryngol 2017; 137: 447-454
  • 62 Daoudi H, Lahlou G, Torres R. et al. Robot-assisted Cochlear Implant Electrode Array Insertion in Adults: A Comparative Study With Manual Insertion. Otol Neurotol 2021; 42: e438-e444
  • 63 Derieppe A, Gendre A, Bourget-Aguilar K. et al. Comparative study of vestibular function preservation in manual versus robotic-assisted cochlear implantation. Cochlear Implants Int 2023; 1-5
  • 64 Gantz JA, Gantz BJ, Kaufmann CR. et al. A Steadier Hand: The First Human Clinical Trial of a Single-Use Robotic-Assisted Surgical Device for Cochlear Implant Electrode Array Insertion. Otol Neurotol 2023; 44: 34-39
  • 65 Torres R, Jia H, Drouillard M. et al. An Optimized Robot-Based Technique for Cochlear Implantation to Reduce Array Insertion Trauma. Otolaryngol Head Neck Surg 2018; 159: 900-907
  • 66 Cochlear Implant Insertion Technology Simplified, iotaMotion. Stand: 26.11.2023 https://iotamotion.com/
  • 67 Dissertation_Thum.pdf.
  • 68 RobOtol de bloc opératoire. collinmedical.fr 2023. Stand: 26.11.2023 https://www.collinmedical.fr/en/robotol/4207-systeme-robotol-avec-accessoires.html
  • 69 Winter JO, Cogan SF, Rizzo JF. Neurotrophin-eluting hydrogel coatings for neural stimulating electrodes. J Biomed Mater Res B Appl Biomater 2007; 81: 551-563
  • 70 Briggs R, O’Leary S, Birman C. et al. Comparison of electrode impedance measures between a dexamethasone-eluting and standard CochlearTM Contour Advance® electrode in adult cochlear implant recipients. Hear Res 2020; 390: 107924
  • 71 Manrique-Huarte R, Zulueta-Santos C, Calavia D. et al. Cochlear Implantation With a Dexamethasone Eluting Electrode Array: Functional and Anatomical Changes in Non-Human Primates. Otol Neurotol 2020; 41: e812-e822
  • 72 Van De Water TR, Abi Hachem RN, Dinh CT. et al. Conservation of hearing and protection of auditory hair cells against trauma-induced losses by local dexamethasone therapy: molecular and genetic mechanisms. Cochlear Implants Int 2010; 11 (Suppl. 01) 42-55
  • 73 Wilk M, Hessler R, Mugridge K. et al. Impedance Changes and Fibrous Tissue Growth after Cochlear Implantation Are Correlated and Can Be Reduced Using a Dexamethasone Eluting Electrode. PLoS One 2016; 11: e0147552
  • 74 Schraivogel S, Aebischer P, Wagner F. et al. Postoperative Impedance-Based Estimation of Cochlear Implant Electrode Insertion Depth. Ear Hear 2023; 44: 1379-1388
  • 75 Minami SB, Takegoshi H, Shinjo Y. et al. Usefulness of measuring electrically evoked auditory brainstem responses in children with inner ear malformations during cochlear implantation. Acta Oto-Laryngologica 2015; 135: 1007-1015
  • 76 Pau HW, Ehrt K, Just T. et al. How reliable is visual assessment of the electrically elicited stapedius reflex threshold during cochlear implant surgery, compared with tympanometry?. J Laryngol Otol 2011; 125: 271-273
  • 77 Wesarg T, Arndt S, Aschendorff A. et al. Intra-und postoperative elektrophysiologische Diagnostik. HNO 2017; 308-320
  • 78 Haumann S, Imsiecke M, Bauernfeind G. et al. Monitoring of the inner ear function during and after cochlear implant insertion using electrocochleography. Trends in hearing 2019; 23: 1216519833567 .
  • 79 Tejani VD, Kim J-S, Etler CP. et al. Longitudinal Electrocochleography as an Objective Measure of Serial Behavioral Audiometry in Electro-Acoustic Stimulation Patients. Ear Hear 2023; 44: 1014-1028
  • 80 Trecca EMC, Riggs WJ, Mattingly JK. et al. Electrocochleography and Cochlear Implantation: A Systematic Review. Otol Neurotol 2020; 41: 864-878
  • 81 Yin L, Barnes J, Saoji A. et al. Clinical Utility of Intraoperative Electrocochleography (ECochG) During Cochlear Implantation: A Systematic Review and Quantitative Analysis. Otol Neurotol 2020; 42: 363-371
  • 82 Höing B, Eichler T, Juelly V. et al. Digital live imaging of intraoperative electrocochleography during cochlear implantation: the first 50 patients. Eur Arch Otorhinolaryngol 2023; 281: 1175-1183
  • 83 Lorens A, Walkowiak A, Polak M. et al. Cochlear Microphonics in Hearing Preservation Cochlear Implantees. J Int Adv Otol 2019; 15: 345-351
  • 84 Kim J-R, Tejani VD, Abbas PJ. et al. Intracochlear Recordings of Acoustically and Electrically Evoked Potentials in Nucleus Hybrid L24 Cochlear Implant Users and Their Relationship to Speech Perception. Front Neurosci 2017; 11: 216
  • 85 O’Leary S, Mylanus E, Venail F. et al. Monitoring Cochlear Health With Intracochlear Electrocochleography During Cochlear Implantation: Findings From an International Clinical Investigation. Ear Hear 2023; 44: 358-370
  • 86 Polterauer D. Intraoperative and postoperative measurement of brainstem responses through electrical stimulation of the auditory nerve via implantable neurostimulators. PATH MEDICAL 2020; DOI: 10.13140/RG.2.2.12688.17922.
  • 87 Haumann S, Lenarz T, Salcher R. Intraoperative recording of eABR using intracochlear stimulation. Laryngo-Rhino-Otologie 2022; 101: 243-244
  • 88 Doyle EJ, Samy RN. Cochlear implantation: an effective modality for hearing restoration following vestibular schwannoma resection. Curr Opin Otolaryngol Head Neck Surg 2022; 30: 309-313
  • 89 Mertens G, Van de Heyning P, Vanderveken O. et al. The smaller the frequency-to-place mismatch the better the hearing outcomes in cochlear implant recipients?. Eur Arch Otorhinolaryngol 2022; 279: 1875-1883
  • 90 Greenwood DD. A cochlear frequency-position function for several species--29 years later. J Acoust Soc Am 1990; 87: 2592-2605
  • 91 Dillon MT, Helpard L, Brown KD. et al. Influence of the Frequency-to-Place Function on Recognition with Place-Based Cochlear Implant Maps. Laryngoscope 2023; 133: 3540-3547
  • 92 Di Maro F, Carner M, Sacchetto A. et al. Frequency reallocation based on cochlear place frequencies in cochlear implants: a pilot study. Eur Arch Otorhinolaryngol 2022; 279: 4719-4725
  • 93 Kurz A, Müller-Graff F-T, Hagen R. et al. One Click Is Not Enough: Anatomy-Based Fitting in Experienced Cochlear Implant Users. Otol Neurotol 2022; 43: 1176-1180
  • 94 Völter C, Schirmer C, Hinsen D. et al. Therapist-Guided Telerehabilitation for Adult Cochlear Implant Users: Developmental and Feasibility Study. JMIR Rehabil Assist Technol 2020; 7: e15843
  • 95 Erstes vollständig implantierbares Cochlea-Implantat (TICI) in Deutschland eingesetzt. 2023 Stand: 26.11.2023 https://www.lmu-klinikum.de/aktuelles/pressemitteilungen/erstes-vollstandig-implantierbares-cochlea-implantat-tici-in-deutschland-eingesetzt/9b1fd2cdc923288f