Pneumologie 2024; 78(10): 693-784
DOI: 10.1055/a-2194-6914
Leitlinie

Medizinisch klinische Diagnostik bei Schimmelpilzexposition in Innenräumen – Update 2023 (AWMF-Register-Nr. 161/001)

Medical clinical diagnostics for indoor mould exposure – Update 2023 (AWMF Register No. 161/001)
Julia Hurraßab
 1   Sachgebiet Hygiene in Gesundheitseinrichtungen, Abteilung Infektions- und Umwelthygiene, Gesundheitsamt der Stadt Köln
,
Birger Heinzowa
 2   Ehemals: Landesamt für soziale Dienste (LAsD) Schleswig-Holstein, Kiel
,
Sandra Walser-Reichenbachab
 3   Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit München
,
Ute Aurbacha
 4   Labor Dr. Wisplinghoff
 5   ZfMK – Zentrum für Umwelt, Hygiene und Mykologie, Köln
,
Sven Beckera
 6   Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Tübingen
,
Romuald Bellmanna
 7   Universitätsklinik für Innere Medizin I, Medizinische Universität Innsbruck
,
Karl-Christian Bergmannab
 8   Institut für Allergieforschung, Charité – Universitätsmedizin Berlin
,
Oliver A. Cornelya
 9   Translational Research, CECAD Cluster of Excellence, Universität zu Köln
,
Steffen Engelhartab
10   Institut für Hygiene und Public Health, Universitätsklinikum Bonn
,
Guido Fischera
11   Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart
,
Thomas Gabrioa
12   Ehemals: Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart
,
Caroline E. W. Herrab
 3   Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit München
13   Ludwig-Maximilians-Universität München, apl. Prof. „Hygiene und Umweltmedizin“
,
Marcus Joesta
14   Allergologisch-immunologisches Labor, Helios Lungen- und Allergiezentrum Bonn
,
Christian Karagiannidisab
15   Fakultät für Gesundheit, Professur für Extrakorporale Lungenersatzverfahren, Universität Witten/Herdecke
16   Lungenklinik Köln Merheim, Kliniken der Stadt Köln
,
Ludger Klimekab
17   Zentrum für Rhinologie und Allergologie, Wiesbaden
,
Martin Köberleab
18   Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München
,
Annette Kolka
19   Institut für Arbeitsschutz der DGUV (IFA), Bereich Biostoffe, Sankt Augustin
,
Herbert Lichtneckera
20   Medizinisches Institut für Umwelt- und Arbeitsmedizin MIU GmbH Erkrath
,
Thomas Lob-Corziliusab
21   Wissenschaftliche AG Umweltmedizin der GPAU, Aachen
,
Norbert Mülleneisenab
22   Asthma und Allergiezentrum Leverkusen
,
Dennis Nowakab
23   Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Mitglied Deutsches Zentrum für Lungenforschung, Klinikum der Universität München
,
Uta Rabeab
24   Zentrum für Allergologie und Asthma, Johanniter-Krankenhaus Treuenbrietzen
,
Monika Raulfab
25   Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität Bochum (IPA)
,
Jörg Steinmanna
26   Institut für Klinikhygiene, Medizinische Mikrobiologie und Klinische Infektiologie, Paracelsus Medizinische Privatuniversität Klinikum Nürnberg
,
Jens-Oliver Steißab
27   Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Gießen und Marburg GmbH, Gießen
28   Schwerpunktpraxis Allergologie und Kinder-Pneumologie Fulda
,
Jannik Stemlera
 9   Translational Research, CECAD Cluster of Excellence, Universität zu Köln
,
Ulli Umpfenbacha
29   Arzt für Kinderheilkunde und Jugendmedizin, Kinderpneumologie, Umweltmedizin, klassische Homöopathie, Asthmatrainer, Neurodermitistrainer, Viersen
,
Kerttu Valtanena
30   FG II 1.4 Mikrobiologische Risiken, Umweltbundesamt, Berlin
,
Barbora Werchana
31   Stiftung Deutscher Polleninformationsdienst (PID), Berlin
,
Birgit Willingerab
32   Klinisches Institut für Labormedizin, Klinische Abteilung für Klinische Mikrobiologie – MedUni Wien
,
Gerhard A. Wiesmüllerab
 4   Labor Dr. Wisplinghoff
 5   ZfMK – Zentrum für Umwelt, Hygiene und Mykologie, Köln
33   Institut für Arbeits-, Sozial- und Umweltmedizin, Uniklinik RWTH Aachen
› Author Affiliations

Zusammenfassung

Die von der Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin (GHUP) federführend aktualisierte Leitlinie „Medizinisch klinische Diagnostik bei Schimmelpilzexposition in Innenräumen – Update 2023“ ist Gegenstand des vorliegenden Beitrags. Schimmelwachstum im Innenraum ist als ein potenzielles Gesundheitsrisiko zu betrachten, auch ohne dass ein quantitativer und/oder kausaler Zusammenhang zwischen dem Vorkommen einzelner Arten und Gesundheitsbeschwerden gesichert werden kann. Es liegt keine Evidenz für einen kausalen Zusammenhang zwischen Feuchte-/Schimmelschäden und Krankheiten des Menschen vor. Wesentliche Gründe dafür sind das ubiquitäre Vorkommen von Schimmelpilzen und und bislang unzureichende diagnostische Methoden. Es liegt lediglich ausreichende Evidenz für folgende Assoziationen von Feuchte-/Schimmelschäden und folgenden Erkrankungen vor: allergische Atemwegserkrankungen, allergische Rhinitis, allergische Rhinokonjunktivitis, Allergische bronchopulmonale Aspergillose (ABPA), andere Allergische bronchopulmonale Mykosen (ABPM), Aspergillom, Aspergillus-Bronchitis, Asthma (Manifestation, Progression, Exazerbation), Begünstigung von Atemwegsinfekten, Bronchitis (akut, chronisch), Community-acquired Aspergillus-Pneumonie, Exogen-allergische Alveolitis (EAA), invasive Aspergillosen, Mykosen, Organic Dust Toxic Syndrome (ODTS) [Arbeitsplatzexposition], pulmonale Aspergillose (subakut, chronisch) und Rhinosinusitis (akut, chronisch invasiv oder granulomatös, allergisch). Dabei ist das sensibilisierende Potenzial von Schimmelpilzen im Vergleich zu anderen Umweltallergenen deutlich geringer einzuschätzen. Aktuelle Studien zeigen europaweit eine vergleichsweise geringe Sensibilisierungsprävalenz von 3–22,5 % gemessen an der Gesamtbevölkerung. Eingeschränkte oder vermutete Evidenz für eine Assoziation liegt vor hinsichtlich des atopischen Ekzems (atopische Dermatitis, Neurodermitis, Manifestation), Befindlichkeitsstörungen, chronisch obstruktive Lungenerkrankung (COPD), Geruchswirkungen, Mucous Membrane Irritation (MMI) und Sarkoidose. Inadäquate oder unzureichende Evidenz für eine Assoziation liegt vor für akute idiopathische pulmonale Hämorrhagie bei Kindern, Arthritis, Autoimmunerkrankungen, chronisches Müdigkeitssyndrom (CFS), Endokrinopathien, gastrointestinale Effekte, Krebs, luftgetragen übertragene Mykotoxikose, Multiple chemische Sensitivität (MCS), Multiple Sklerose, neuropsychologische Effekte, neurotoxische Effekte, plötzlicher Kindstod, renale Effekte, Reproduktionsstörungen, Rheuma, Schilddrüsenerkrankungen, Sick-Building-Syndrom (SBS), Teratogenität und Urtikaria. Das Infektionsrisiko durch die in Innenräumen regelmäßig vorkommenden Schimmelpilzarten ist für gesunde Personen gering, die meisten Arten sind in die Risikogruppe 1 und wenige in 2 (Aspergillus fumigatus, Aspergillus flavus) der Biostoffverordnung eingestuft. Nur Schimmelpilze, die potenziell in der Lage sind, Toxine zu bilden, kommen als Auslöser einer Intoxikation in Betracht. Ob im Einzelfall eine Toxinbildung im Innenraum stattfindet, entscheiden die Umgebungs- und Wachstumsbedingungen und hier vor allem das Substrat. Von Geruchswirkungen und/oder Befindlichkeitsstörungen kann bei Feuchte-/Schimmelschäden im Innenraum grundsätzlich jeder betroffen sein. Hierbei handelt es sich nicht um eine akute Gesundheitsgefährdung. Prädisponierende Faktoren für Geruchswirkungen können genetische und hormonelle Einflüsse, Prägung, Kontext und Adaptationseffekte sein. Prädisponierende Faktoren für Befindlichkeitsstörungen können Umweltbesorgnisse, -ängste, -konditionierungen und -attributionen sowie eine Vielzahl von Erkrankungen sein. Besonders zu schützende Risikogruppen bezüglich eines Infektionsrisikos sind Personen unter Immunsuppression nach der Einteilung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut (RKI), Personen mit schwer verlaufender Influenza, Personen mit schwer verlaufender COVID-19 und Personen mit Mukoviszidose (zystischer Fibrose), bezüglich eines allergischen Risikos Personen mit Mukoviszidose (zystischer Fibrose) und Personen mit Asthma bronchiale. Die rationale Diagnostik beinhaltet die Anamnese, eine körperliche Untersuchung, eine konventionelle Allergiediagnostik einschließlich gegebenenfalls Provokationstests. Zum Vorgehen bei Schimmelpilzinfektionen wird auf die entsprechenden Leitlinien verwiesen. Hinsichtlich der Mykotoxine existieren zurzeit keine brauchbaren und validierten Testverfahren, die in der klinischen Diagnostik eingesetzt werden könnten. Präventivmedizinisch ist wichtig, dass Schimmelpilzbefall in relevantem Ausmaß aus Vorsorgegründen nicht toleriert werden darf. Zur Beurteilung des Schadensausmaßes und zum Vorgehen wird auf den „Schimmelpilzleitfaden“ des Umweltbundesamtes verwiesen.

Abstract

This article is an abridged version of the updated AWMF mould guideline “Medical clinical diagnostics in case of indoor mould exposure – Update 2023”, presented in July 2023 by the German Society of Hygiene, Environmental Medicine and Preventive Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin, GHUP), in collaboration with German and Austrian scientific medical societies, and experts. Indoor mould growth is a potential health risk, even if a quantitative and/or causal relationship between the occurrence of individual mould species and health problems has yet to be established. There is no evidence for a causal relationship between moisture/mould damage and human diseases, mainly because of the ubiquitous presence of fungi and hitherto inadequate diagnostic methods. Sufficient evidence for an association between moisture/mould damage and the following health effects has been established for: allergic respiratory diseases, allergic rhinitis, allergic rhino-conjunctivitis, allergic bronchopulmonary aspergillosis (ABPA), other allergic bronchopulmonary mycosis (ABPM), aspergilloma, Aspergillus bronchitis, asthma (manifestation, progression, exacerbation), bronchitis (acute, chronic), community-acquired Aspergillus pneumonia, hypersensitivity pneumonitis (HP; extrinsic allergic alveolitis (EEA)), invasive Aspergillosis, mycoses, organic dust toxic syndrome (ODTS) [workplace exposure], promotion of respiratory infections, pulmonary aspergillosis (subacute, chronic), and rhinosinusitis (acute, chronically invasive, or granulomatous, allergic). In this context the sensitizing potential of moulds is obviously low compared to other environmental allergens. Recent studies show a comparatively low sensitization prevalence of 3–22,5 % in the general population across Europe. Limited or suspected evidence for an association exist with respect to atopic eczema (atopic dermatitis, neurodermatitis; manifestation), chronic obstructive pulmonary disease (COPD), mood disorders, mucous membrane irritation (MMI), odor effects, and sarcoidosis. (iv) Inadequate or insufficient evidence for an association exist for acute idiopathic pulmonary hemorrhage in infants, airborne transmitted mycotoxicosis, arthritis, autoimmune diseases, cancer, chronic fatigue syndrome (CFS), endocrinopathies, gastrointestinal effects, multiple chemical sensitivity (MCS), multiple sclerosis, neuropsychological effects, neurotoxic effects, renal effects, reproductive disorders, rheumatism, sick building syndrome (SBS), sudden infant death syndrome, teratogenicity, thyroid diseases, and urticaria.

The risk of infection posed by moulds regularly occurring indoors is low for healthy persons; most species are in risk group 1 and a few in risk group 2 (Aspergillus fumigatus, A. flavus) of the German Biological Agents Act (Biostoffverordnung). Only moulds that are potentially able to form toxins can be triggers of toxic reactions. Whether or not toxin formation occurs in individual cases is determined by environmental and growth conditions, water activity, temperature and above all the growth substrates.

In case of indoor moisture/mould damage, everyone can be affected by odor effects and/or mood disorders.

However, this is not an acute health hazard. Predisposing factors for odor effects can include genetic and hormonal influences, imprinting, context and adaptation effects. Predisposing factors for mood disorders may include environmental concerns, anxiety, condition, and attribution, as well as various diseases. Risk groups to be protected particularly regarding infection risk are immunocompromised persons according to the classification of the German Commission for Hospital Hygiene and Infection Prevention (Kommission für Krankenhaushygiene und Infektionsprävention, KRINKO) at the Robert Koch-Institute (RKI), persons suffering from severe influenza, persons suffering from severe COVID-19, and persons with cystic fibrosis (mucoviscidosis); with regard to allergic risk, persons with cystic fibrosis (mucoviscidosis) and patients with bronchial asthma must be protected. The rational diagnostics include the medical history, physical examination, and conventional allergy diagnostics including provocation tests if necessary; sometimes cellular test systems are indicated. In the case of mould infections, the reader is referred to the specific guidelines. Regarding mycotoxins, there are currently no useful and validated test procedures for clinical diagnostics. From a preventive medical point of view, it is important that indoor mould infestation in relevant magnitudes cannot be tolerated for precautionary reasons.

For evaluation of mould damage in the indoor environment and appropriate remedial procedures, the reader is referred to the mould guideline issued by the German Federal Environment Agency (Umweltbundesamt, UBA).

a Mitautor*in


b Stimmberechtigt*e Mandatsträger*in einer Wissenschaftlichen Medizinischen Fachgesellschaft, einer Gesellschaft, eines Ärzteverbandes




Publication History

Article published online:
09 February 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Norbäck D, Zock JP. et al. Building dampness and mold in European homes in relation to climate, building characteristics and socio-economic status: The European Community Respiratory Health Survey ECRHS II. Indoor Air 2017; 27: 921-932
  • 2 Innenraumlufthygiene-Kommission des Umweltbundesamtes. Leitfaden zur Vorbeugung, Erfassung und Sanierung von Schimmelbefall in Gebäuden. Berlin, Bonn: Umweltbundesamt; 2017
  • 3 Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“ des Robert Koch-Instituts. Schimmelpilzbelastung in Innenräumen – Befunderhebung, gesundheitliche Bewertung und Maßnahmen. Bundesgesundheitsbl – Gesundheitsforsch – Gesundheitsschutz 2007; 50: 1308-1323
  • 4 Herr CEW, Eikmann Th. et al. Umweltmedizinische Relevanz von Schimmelpilzen im Lebensumfeld. Umweltmed Forsch Prax 2010; 15: 76-83
  • 5 Hurraß J, Szewzyk R. et al. Risk of olfactory effects and impairment of well-being resulting from mould exposure – Results of a workshop of the annual conference of the German Society of Hygiene, Environmental Medicine and Preventive Medicine held in Freiburg, Germany, in 2012. Proceedings of Indoor Air 2014. Hong Kong. Paper ID HP0126: 1-8
  • 6 Wiesmüller GA, Szewzyk R. et al. Häufige Fragestellungen in Zusammenhang mit der Bewertung eines möglichen Infektionsrisikos von Schimmelpilzexpositionen: Antworten eines Round Table auf dem Workshop „Schimmelpilze und schwere Grunderkrankungen – welches Risiko ist damit verbunden?“ im Rahmen der GHUP-Jahrestagung 2009. Umweltmed Forsch Prax 2010; 15: 104-110
  • 7 Wiesmüller GA, Szewzyk R. et al. Häufige Fragestellungen in Zusammenhang mit der Bewertung eines möglichen allergischen Risikos von Schimmelpilzexpositionen: Antworten eines Round Table auf dem Workshop "Schimmelpilze und allergische Erkrankungen" im Rahmen der GHUP-Jahrestagung 2010. Umweltmed Forsch Prax 2010; 16: 98-106
  • 8 Wiesmüller GA, Szewzyk R. et al. Infection risk of mold exposure – Results of a workshop of the annual con-ference of the German Society of Hygiene, Environmental Medicine and Preventive Medicine held in Stuttgart, Germany in 2009. Proceedings of Indoor Air 2011. Austin, Texas, USA. Paper ID 666 1-6
  • 9 Wiesmüller GA, Szewzyk R. et al. Häufige Fragestellungen in Zusammenhang mit der Bewertung eines möglichen toxischer Reaktionen von Schimmelpilzexpositionen: Antworten eines Round Table auf dem Workshop "Schimmelpilze und toxische Reaktionen" im Rahmen der GHUP-Jahrestagung 2011. Umweltmed Forsch Prax 2012; 17: 159-169
  • 10 Wiesmüller GA, Szewzyk R. et al. Allergic risk of mold exposure – Results of a GHUP workshop in Germany in 2010. In: Proceedings of Healthy Buildings 2012, 10th International Conference. 5H.7. Brisbane, Australia: Queensland University of Technology; 2012. ISBN: 978-1-921897-40-5 1-6
  • 11 Wiesmüller GA, Heinzow B, Herr CEW. Hrsg. Gesundheitsrisiko Schimmelpilze im Innenraum. Heidelberg, München, Landsberg, Frechen, Hamburg: ecomed Medizin; 2013
  • 12 Wiesmüller GA, Szewzyk R. et al. Frequently asked questions about possible health effects of indoor mold exposure – Answers from a panel of experts at four workshops of the Society of Hygiene, Environmental Medicine and Preventive Medicine (GHUP). Umweltmed – Hygiene – Arbeitsmed 2013; 18: 249-274
  • 13 Wiesmüller GA, Szewzyk R. et al. Häufige Fragestellungen in Zusammenhang mit der Bewertung eines möglichen Geruchswirkungen und Befindlichkeitsstörungen Schimmelpilzexpositionen: Antworten eines Round Table auf dem Workshop "Schimmelpilze – Geruchswirkungen und Befindlichkeitsstörungen" im Rahmen der GHUP-Jahrestagung 2012. Umweltmed – Hygiene – Arbeitsmed 2013; 18: 35-40
  • 14 Wiesmüller GA, Szewzyk R. et al. Risk of toxic reactions to mould exposure – Results of a workshop of the annual conference of the German Society of Hygiene, Environmental Medicine and Preventive Medicine held in Munich, Germany, in 2011. Proceedings of Indoor Air 2014. Hong Kong. Paper ID HP0044: 1-8
  • 15 World Health Organization (WHO). Guidelines for Indoor Air Quality: Dampness and Mould. Kopenhagen: World Health Organization; 2009. https://www.who.int/publications/i/item/9789289041683 (Stand: 06.03.2023)
  • 16 Morisset M, Parisot L. et al. Food allergy to moulds: two cases observed after dry fermented sausage ingestion. Allergy 2003; 58: 1203-1204
  • 17 Mücke W, Lemmen C. Schimmelpilze. Vorkommen – Gesundheitsgefahren – Schutzmaßnahmen. Landsberg/Lech: ecomed Verlagsgesellschaft; 2004
  • 18 Sennekamp J. ODTS – Toxische Alveolitis organischer Stäube. In: Letzel St, Nowak D. Hrsg. Handbuch der Arbeitsmedizin. 9. Erg. Lfg. 10/08. Landsberg/Lech: ecomed Medizin; 2008: 1-18
  • 19 Landesgesundheitsamt Baden-Württemberg, Arbeitskreis „Qualitätssicherung – Schimmelpilze in Innenräumen“. Schimmelpilze in Innenräumen – Nachweis, Bewertung, Qualitätsmanagement. Abgestimmtes Arbeitsergebnis des Arbeitskreises „Qualitätssicherung – Schimmelpilze in Innenräumen“ am Landesgesundheitsamt Baden-Württemberg, 14.12.2001 (überarbeitet Dezember 2004). Stuttgart: Landesgesundheitsamt Baden-Württemberg; 2004
  • 20 Deutsche Gesetzliche Unfallversicherung (DGUV). Information 201-028. Handlungsanleitung Gesundheitsgefährdungen durch Biostoffe bei der Schimmelpilzsanierung 2022. https://publikationen.dguv.de/widgets/pdf/download/article/644 (Stand: 06.03.2023)
  • 21 Landesgesundheitsamt Baden-Württemberg. Handlungsempfehlung für die Sanierung von mit Schimmelpilzen befallenen Innenräumen. Stuttgart: Landesgesundheitsamt Baden-Württemberg; 2011. https://www.gesundheitsamt-bw.de/fileadmin/LGA/_DocumentLibraries/SiteCollectionDocuments/03_Fachinformationen/FachpublikationenInfo_Materialien/Schimmelpilzsanierung_Handlungsempfehlung.pdf (Stand: 06.03.2023)
  • 22 Oswald R. Angemessene Antworten auf das komplexe Problem der Schimmelursachen? Stellungnahme zum DIN-Fachbericht 4108-8 Vermeidung von Schimmelwachstum in Wohngebäuden. Der Bausachverständige 2011; 7: 32-37
  • 23 Government of Canda, Health Canada. Addressing moisture and mould in your home 2020. https://www.canada.ca/en/health-canada/services/publications/healthy-living/addressing-moisture-mould-your-home.html (Stand: 06.03.2023)
  • 24 Government of Western Australia, Department of Health. Guidelines for Managing Mould and Dampness Related Public Health Risks in Buildings 2015. https://www.healthywa.wa.gov.au/~/media/Files/HealthyWA/Original/Mould-guidelines.pdf (Stand: 06.03.2023)
  • 25 Innenraumlufthygiene-Kommission des Umweltbundesamtes. Leitfaden zur Vorbeugung, Untersuchung, Bewertung und Sanierung von Schimmelpilzwachstum in Innenräumen („Schimmelpilz-Leitfaden“). Berlin: Umweltbundesamt; 2002
  • 26 Innenraumlufthygiene-Kommission des Umweltbundesamtes. Leitfaden zur Ursachensuche und Sanierung bei Schimmelpilzwachstum in Innenräumen („Schimmelpilzsanierungs-Leitfaden“). Berlin: Umweltbundesamt; 2005
  • 27 New York City Department of Health and Mental Hygiene. Guidelines on Assessment and Remediation of Fungi in Indoor Environments 2008. https://www1.nyc.gov/assets/doh/downloads/pdf/epi/epi-mould-guidelines.pdf (Stand: 06.03.2023)
  • 28 French agency for food, environmental and occupational health & safety (anses). Revised OPINION of the French Agency for Food, Environmental and Occupational Health & Safety on mould in buildings 2016. https://www.anses.fr/en/system/files/AIR2014SA0016EN.pdf (Stand: 06.03.2023)
  • 29 Institute of Medicine (IOM), Committee on Damp Indoor Spaces and Health, Board of Health Promotion and Disease Prevention. Damp indoor spaces and health. Washington D.C: Academy of Science, The National Academies Press; 2004. http://www.nap.edu/openbook.php?record_id=11011 (Stand: 06.03.2023)
  • 30 Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut (RKI). Anforderungen an die Infektionsprävention bei der medizinischen Versorgung von immunsupprimierten Patienten. Bundesgesundheitsbl 2021; 64: 232-264
  • 31 Haftenberger M, Laußmann D. et al. Prävalenz von Sensibilisierungen gegen Inhalations- und Nahrungsmittelallergene. Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsbl 2013; 56: 687-697
  • 32 Heinzerling LM, Burbach GJ. et al. GA(2)LEN skin test study I: GA(2)LEN harmonization of skin prick testing: novel sensitization patterns for inhalant allergens in Europe. Allergy 2009; 64: 1498-1506
  • 33 Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“ des Robert Koch-Instituts. „Qualitätssicherung beim Lymphozytentransformationstest“ – Addendum zum LTT-Papier der RKI-Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“. Bundesgesundheitsbl – Gesundheitsforsch – Gesundheitsschutz 2008; 51: 1070-1076
  • 34 TRBA 460. Einstufung von Pilzen in Risikogruppen. GMBl 2016, Nr. 29/30 vom 22.07.2016, S. 562, 4. Änderung: GMBl. Nr. 45 vom 10.11.2020, 1009. https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRBA/TRBA-460.html (Stand: 06.03.2023)
  • 35 Anonymus Schwerpunktthema Schimmelpilze. Umweltmed Forsch Prax 2010; 15: 69-112
  • 36 Anonymus Schwerpunktthema: Schimmelpilze und allergische Erkrankungen. Umweltmed Forsch Prax 2011; 16: 61-108
  • 37 Anonymus Schwerpunktthema: Schimmelpilze und toxische Reaktionen. Umweltmed Forsch Prax 2012; 17: 133-169
  • 38 Anonymus Schwerpunktthema: Schimmelpilze und Geruchswirkungen, Befindlichkeitsstörungen. Umweltmed Hyg Arbeitsmed 2013; 1: 5-40
  • 39 Wiesmüller GA, Heinzow B. et al. AWMF-Schimmelpilz-Leitlinie „Medizinisch klinische Diagnostik bei Schimmelpilzexposition in Innenräumen“, AWMF-Register-Nr. 161/001. AWMF-online Leitlinie. http://www.awmf.org/leitlinien/detail/ll/161-001.html (Stand 11.04.2016; Stand: 06.03.2023)
  • 40 Palaty C, Shum M. Health effects from mould exposure or dampness in indoor environments. Evidence review. Vancouver: National Collaborating Centre for Environmental Health; 2012. http://www.ncceh.ca/sites/default/files/Mould_and_Health_Effects_Jul_2012.pdf (Stand: 06.03.2023)
  • 41 Baxi SN, Portnoy JM. et al. Exposure and Health Effects of Fungi on Humans. J Allergy Clin Immunol Pract 2016; 4: 396-404
  • 42 Mendell MJ, Mirer AG. et al. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ Health Perspect 2011; 119: 748-756
  • 43 Mendell MJ, Kumagai K. Observation-based metrics for residential dampness and mold with dose-response relationships to health: A review. Indoor Air 2017; 27: 506-517
  • 44 Caillaud D, Leynaert B. et al. Indoor mould exposure, asthma and rhinitis: findings from systematic reviews and recent longitudinal studies. Eur Respir Rev 2018; 27: 170137
  • 45 Mendell MJ, Macher MJ, Kumagai K. Measured moisture in buildings and adverse health effects: A review. Indoor Air 2018; 28: 488-499
  • 46 DIN ISO 16000-21. Innenraumluftverunreinigungen – Teil 21: Nachweis und Zählung von Schimmelpilzen – Probenahme von Materialien (DIN ISO 16000-21:2014-05). Berlin: Beuth Verlag GmbH; 2014
  • 47 DIN ISO 16000-17. Innenraumluftverunreinigungen – Teil 17: Nachweis und Zählung von Schimmelpilzen – Kultivierungsverfahren (DIN ISO 16000-17:2008-12). Berlin: Beuth Verlag GmbH; 2008
  • 48 DIN ISO 16000-18. Innenraumluftverunreinigungen – Teil 18: Nachweis und Zählung von Schimmelpilzen – Probenahme durch Impaktion (DIN ISO 16000-18:2012-01). Berlin: Beuth Verlag GmbH; 2012
  • 49 DIN ISO 16000-16. Innenraumluftverunreinigungen – Teil 16: Nachweis und Zählung von Schimmelpilzen – Probenahme durch Filtration (DIN ISO 16000-16:2009-12). Berlin: Beuth Verlag GmbH; 2009
  • 50 DIN ISO 16000-20. Innenraumluftverunreinigungen – Teil 20: Nachweis und Zählung von Schimmelpilzen – Bestimmung der Gesamtsporenanzahl (DIN ISO 16000-20:2015-11). Berlin: Beuth Verlag GmbH; 2015
  • 51 Gabrio T, Trautmann C. et al. Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Förderkennzeichen (UFOPLAN) 20161218/07. Erhebung von Hintergrundwerten für die Bewertung von Schimmelpilzen im Innenraum. 2004
  • 52 Schäfer J, Trautmann C. et al. Vorkommen von Actinomyceten in Innenräumen. Gefahrstoffe – Reinhaltung der Luft 2009; 69: 335-341
  • 53 Schäfer J. Untersuchungen zur Diversität von Actinobacteria in Innenräumen. Kumulative Dissertation. Gießen: Fachbereich Agrarwissenschaften, Ökotrophologie und Umweltmanagement und der gemeinsamen Kommission Naturwissenschaften der Justus-Liebig Universität; 2011. http://geb.uni-giessen.de/geb/volltexte/2012/8576/pdf/SchaeferJenny_2011_10_04.pdf (Stand: 06.03.2023)
  • 54 Umweltbundesamt, Hrsg. Untersuchungen zum Vorkommen und zur gesundheitlichen Relevanz von Bakterien in Innenräumen. Forschungsbericht 205 62 236, UBA-FB 001229. Berlin: Umweltbundesamt; 2009. https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3702.pdf (Stand: 06.03.2023)
  • 55 Mücke W, Lemmen C. VII-6 Schimmelpilze. In: Wichmann HE, Schlipköter HW, Fülgraff G. Hrsg. Handbuch der Umweltmedizin, 30. Erg. Lfg. 12/04. Landsberg/Lech: ecomed Verlagsgesellschaft; 2004
  • 56 Hinke M, Seibert M. Pilze in Innenräumen und am Arbeitsplatz. Wien: Springer; 2013
  • 57 de Hoog GS, Guarro J. et al. Atlas of Clinical Fungi, 4th Edition. Hilversum; 2020
  • 58 Samson RA. Rückblick und Ausblick – Taxonomie und Bestimmung der Schimmelpilze im Wandel. In: Berufsverband Deutscher Baubiologen VDB e. V., Hrsg. Tagungsband der 21. Pilztagung AnBUS. Fürth: 2017: 27-36
  • 59 Samson RA, Houbraken J. et al. Food and Indoor Fungi. Westerdijk Laboratory Manual series: 2 ed. (Westerdijk Laboratory Manual series). Utrecht: Westerdijk Fungal Biodiversity Institute; 2019
  • 60 Gabrio T. Woran erkenne ich ein qualifiziertes Schimmelpilzlabor?. Der Bausachverständige 2020; 16: 33-39
  • 61 Fischer G, Thißen R. et al. Relevance of Microfungi and their Secondary Metabolites (Mycotoxins) for Indoor Hygiene. Proceedings of Healthy Buildings Vol I. 2006: 189-194
  • 62 Bloom E, Grimsley LF. et al. Molds and mycotoxins in dust from water-damaged homes in New Orleans after hurricane Katrina. Indoor Air 2009; 19: 153-158
  • 63 Arce-López B, Lizarraga E. et al. Human Biomonitoring of Mycotoxins in Blood, Plasma and Serum in Recent Years: A Review. Toxins 2020; 12: 147
  • 64 Despot DJ, Kocsubé S. et al. Species diversity and cytotoxic potency of airborne sterigmatocystine-producing Aspergilli from the section Versicolores. Sci Total Environ 2016; 562: 296-304
  • 65 Engelhart S, Loock A. et al. Occurrence of Toxigenic Aspergillus versicolor Isolates and Sterigmatocystin in Carpet Dust from Damp Indoor Environments. Appl Environ Microbiol 2002; 68: 3886-3890
  • 66 Fischer G, Thissen R. et al. Luftgetragene Schimmelpilze in der Umwelt des Menschen – gesundheitliche Relevanz und Möglichkeiten der Risikobewertung. Gefahrst Reinhalt Luft 2005; 65: 335-340
  • 67 Schulz T, Senkpiel K, Ohgke H. Comparison of the toxicity of reference mycotoxins and spore extracts of common indoor moulds. Int J Hyg Environ Health 2004; 207: 267-277
  • 68 Müller A, Lehmann I. et al. Increased incidence of allergic sensitisation and respiratory diseases due to mould exposure: Results of the Leipzig Allergy Risk children Study (LARS). Int J Hyg Environ Health 2002; 204: 363-365
  • 69 Fischer G, Thißen R. et al. Mikrobielle Stoffwechselprodukte als Meßparameter bei Emissionsbetrachtungen an Bioabfall-Behandlungsanlagen. Gefahrst Reinhalt Luft 2004; 64: 229-238
  • 70 Nevalainen A, Täubel M, Hyvärinen A. Indoor fungi: companions and contaminants. Indoor Air 2015; 25: 125-156
  • 71 Pestka JJ, Yike I. et al. Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci 2008; 104: 4-26
  • 72 Peitzsch M, Sulyok M. et al. Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, The Netherlands and Spain. J Environ Monit 2012; 14: 2044-2053
  • 73 Täubel M, Sulyok M. et al. Co-occurrence of toxic bacterial and fungal secondary metabolites in moisture-damaged indoor environments. Indoor Air 2011; 21: 368-375
  • 74 Mücke W, Lemmen C. Bioaerosole – Risiken durch biologische Luftinhaltsstoffe Teil 1. Umweltmed Forsch Prax 2011; 16: 383-391
  • 75 Mücke W, Lemmen C. Bioaerosole – Risiken durch biologische Luftinhaltsstoffe Teil 2. Umweltmed Forsch Prax 2012; 17: 35-45
  • 76 Mücke W, Lemmen C. Bioaerosole und Gesundheit: Wirkungen biologischer Luftinhaltsstoffe und praktische Konsequenzen. Landsberg/Lech: ecomed Verlagsgesellschaft; 2008
  • 77 Choi H, Byrne S. et al. Residential culturable fungi, (1-3, 1-6)-β-d-glucan, and ergosterol concentrations in dust are not associated with asthma, rhinitis, or eczema diagnoses in children. Indoor Air 2014; 24: 158-170
  • 78 Frankel M, Hansen EW, Madsen AM. Effect of relative humidity on the aerosolization and total inflammatory potential of fungal particles from dust-inoculated gypsum boards. Indoor Air 2014; 24: 16-28
  • 79 Górny RL, Reponen T. et al. Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 2002; 68: 3522-3531
  • 80 Hirvonen M-R, Huttunen K, Roponen M. Bacterial strains from moldy buildings are highly potent inducers of inflammatory and cytotoxic effects. Indoor Air 2005; 15 (Suppl. 09) 65-70
  • 81 Rao CY, Cox-Ganser JM, Chew GL. et al. Use of surrogate markers of biological agents in air and settled dust samples to evaluate a water-damaged hospital. Indoor Air 2005; 15 (Suppl. 09) 89-97
  • 82 Rylander R. Airborne (1-->3)-beta-D-Glucan and airway disease in a day-care center before and after renovation. Arch Environ Health 1997; 52: 281-285
  • 83 Tischer CG, Heinrich J. Exposure assessment of residential mould, fungi and microbial components in relation to children’s health: achievements and challenges. Int J Hyg Environ Health 2013; 216: 109-114
  • 84 Kespohl S, Raulf M. Mould allergens: How far has molecular allergy diagnosis come? Part 13 of the series Molecular Allergology. Allergo J Int 2014; 23: 120-125
  • 85 Olynych TJ, Jakeman DL, Marshall JS. Fungal zymosan induces leukotriene production by human mast cells through a dectin-1-dependent mechanism. J Allergy Clin Immunol 2006; 118: 837-843
  • 86 Rylander R. Microbial cell wall constituents in indoor air and their relation to disease. Indoor Air Suppl 1998; 4: 59-68
  • 87 Wang J, Janson C. et al. Dampness and mold at home and at work and onset of insomnia symptoms, snoring and excessive daytime sleepiness. Environ Int 2020; 139: 105691
  • 88 Ahlroth Pind C, Gunnbjörnsdottír M. et al. Patient-reported signs of dampness at home may be a risk factor for chronic rhinosinusitis: A cross-sectional study. Clin Exp Allergy 2017; 47: 1383-1389
  • 89 Bardana Jr EJ. Indoor air quality and health does fungal contamination play a significant role?. Immunol Allergy Clin North Am 2003; 23: 291-309
  • 90 Borchers AT, Chang C, Eric Gershwin M. Mold and Human Health: A Reality Check. Clin Rev Allergy Immunol 2017; 52: 305-322
  • 91 Bornehag CG, Blomquist G. et al. Dampness in buildings and health. Nordic interdisciplinary review of the scientific evidence on associations between exposure to "dampness" in buildings and health effects (NORDDAMP). Indoor Air 2001; 11: 72-86
  • 92 Burr ML. Health effects of indoor molds. Rev Environ Health 2001; 16: 97-103
  • 93 Bush RK, Portnoy JM. et al. The medical effects of mold exposure. J Allergy Clin Immunol 2006; 117: 326-333
  • 94 Buzina W. [Health effects of indoor molds]. [Article in German]. Wien Med Wochenschr 2007; 157: 462-465
  • 95 Choi H, Schmidbauer N, Bornehag CG. Volatile organic compounds of possible microbial origin and their risks on childhood asthma and allergies within damp homes. Environ Int 2017; 98: 143-151
  • 96 Committee on Environmental Health. et al. Spectrum of noninfectious health effects from molds. Pediatrics 2006; 118: 2582-2586
  • 97 Cooley JD, Wong WC. et al. Fungi and the indoor environment: their impact on human health. Adv Appl Microbiol 2004; 55: 1-30
  • 98 Cox-Ganser JM. Indoor dampness and mould health effects – ongoing questions on microbial exposures and allergic versus nonallergic mechanisms. Clin Exp Allergy 2015; 45: 1478-11482
  • 99 Cross S. Mould spores: the unusual suspects in hay fever. Community Nurse 1997; 3: 25-26
  • 100 Denning DW, O’Driscoll BR. et al. The link between fungi and severe asthma: a summary of the evidence. Eur Respir J 2006; 27: 615-626
  • 101 Denning DW, Chakrabarti A. Pulmonary and sinus fungal diseases in non-immunocompromised patients. Lancet Infect Dis 2017; 17: e357-e366
  • 102 Ekowati Y, van Diepeningen AD. et al. Clinically relevant fungi in water and on surfaces in an indoor swimming pool facility. Int J Hyg Environ Health 2017; 220: 1152-1160
  • 103 Etzel R, Rylander R. Indoor mold and Children's health. Environ Health Perspect 1999; 107 (Suppl. 03) 463
  • 104 Fischer G, Dott W. Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Arch Microbiol 2003; 179: 75-82
  • 105 Fisk WJ, Lei-Gomez Q, Mendell MJ. Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air 2007; 17: 284-296
  • 106 Fisk WJ, Eliseeva EA, Mendell MJ. Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta-analysis. Environ Health 2010; 9: 72
  • 107 Fisk WJ, Chan WR, Johnson AL. Does dampness and mold in schools affect health? Results of a meta-analysis. Indoor Air 2019; 29: 895-902
  • 108 Fukutomi Y, Taniguchi M. Sensitization to fungal allergens: Resolved and unresolved issues. Allergol Int 2015; 64: 321-331
  • 109 Fung F, Hughson WG. Health effects of indoor fungal bioaerosol exposure. Appl Occup Environ Hyg 2003; 18: 535-544
  • 110 Fung F, Hughson WG. The fundamentals of mold-related illness: when to suspect the environment is making a patient sick. Postgrad Med 2008; 120: 80-84
  • 111 Gautier C, Caillaud D, Charpin D. [Non-allergenic impact of indoor mold exposure]. [Article in French]. Rev Mal Respir 2018; 35: 652-658
  • 112 Genuis SJ. Clinical medicine and the budding science of indoor mold exposure. Eur J Intern Med 2007; 18: 516-523
  • 113 Hardin BD, Kelman BJ, Saxon A. Adverse human health effects associated with molds in the indoor environment. J Occup Environ Med 2003; 45: 470-478
  • 114 Heutte N, André V. et al. Assessment of multi-contaminant exposure in a cancer treatment center: a 2-year monitoring of molds, mycotoxins, endotoxins, and glucans in bioaerosols. Environ Monit Assess 2017; 189: 31
  • 115 Holme JA, Øya E. et al. Characterization and pro-inflammatory potential of indoor mold particles. Indoor Air 2020; 30: 662-681
  • 116 Hope J. A review of the mechanism of injury and treatment approaches for illness resulting from exposure to water-damaged buildings, mold, and mycotoxins. ScientificWorldJournal 2013; 2013: 767482
  • 117 Hurraß J, Heinzow B. et al. Medical diagnostics for indoor mold exposure. Int J Hyg Environ Health 2017; 220: 305-328
  • 118 Hyvönen S, Lohi J, Tuuminen T. Moist and Mold Exposure is Associated With High Prevalence of Neurological Symptoms and MCS in a Finnish Hospital Workers Cohort. Saf Health Work 2020; 11: 173-177
  • 119 Ibargoyen-Roteta N, Aguinaga-Ontoso I. et al. Role of the home environment in rhinoconjunctivitis and eczema in schoolchildren in Pamplona, Spain. J Investig Allergol Clin Immunol 2007; 17: 137-144
  • 120 Jaakkola MS, Lajunen TK, Jaakkola JJK. Indoor mold odor in the workplace increases the risk of Asthma-COPD Overlap Syndrome: a population-based incident case-control study. Clin Transl Allergy 2020; 10: 3
  • 121 Karunanayake CP, Rennie DC. et al. Bronchitis and Its Associated Risk Factors in First Nations Children. Children (Basel) 2017; 4: 103
  • 122 Karvonen AM, Tischer C. et al. Early age exposure to moisture damage and systemic inflammation at the age of 6 years. Indoor Air 2018; 28: 450-458
  • 123 Kennedy K, Grimes C. Indoor water and dampness and the health effects on children: a review. Curr Allergy Asthma Rep 2013; 13: 672-680
  • 124 King N, Auger P. Indoor air quality, fungi, and health. How do we stand?. Can Fam Physician 2002; 48: 298-302
  • 125 Koskinen OM, Husman TM. et al. The relationship between moisture or mould observations in houses and the state of health of their occupants. Eur Respir J 1999; 14: 1363-1367
  • 126 Kumar P, Kausar MA. et al. Biological contaminants in the indoor air environment and their impacts on human health. Air Qual Atmos Health 2021; 14: 1723-1736
  • 127 Li W, Liu Q. et al. Effects of indoor environment and lifestyle on respiratory health of children in Chongqing, China. J Thorac Dis 2020; 12: 6327-6341
  • 128 Mazur LJ, Kim J. Committee on Environmental Health, American Academy of Pediatrics. Spectrum of noninfectious health effects from molds. Pediatrics 2006; 118: e1909-e1926
  • 129 McGinnis MR. Pathogenesis of indoor fungal diseases. Med Mycol 2004; 42: 107-117
  • 130 Meggs WJ. Epidemics of mold poisoning past and present. Toxicol Ind Health 2009; 25: 571-576
  • 131 Méheust D, Le Cann P. et al. Indoor fungal contamination: health risks and measurement methods in hospitals, homes and workplaces. Crit Rev Microbiol 2014; 40: 248-260
  • 132 Mihinova D, Pieckova E. Moldy buildings, health of their occupants and fungal prevention. Bratisl Lek Listy 2012; 113: 314-318
  • 133 Moses L, Morrissey K. et al. Exposure to Indoor Mouldy Odour Increases the Risk of Asthma in Older Adults Living in Social Housing. Int J Environ Res Public Health 2019; 16: 2600
  • 134 Mousavi MS, Hadei M. et al. Investigating the effect of several factors on concentrations of bioaerosols in a well-ventilated hospital environment. Environ Monit Assess 2019; 191: 407
  • 135 Mudarri DH. Valuing the Economic Costs of Allergic Rhinitis, Acute Bronchitis, and Asthma from Exposure to Indoor Dampness and Mold in the US. J Environ Public Health 2016; 2016: 2386596
  • 136 Nevalainen A, Seuri M. Of microbes and men. Indoor Air 2005; 15 (Suppl. 09) 58-64
  • 137 Nolard N, Béguin H, Chasseur C. [Mold allergy: 25 years of indoor and outdoor studies in Belgium]. [Article in French]. Allerg Immunol (Paris) 2001; 33: 101-102
  • 138 Norbäck D, Cai GH. Dampness, indoor mould, fungal DNA and respiratory health – molecular methods in indoor epidemiology. Clin Exp Allergy 2015; 45: 840-843
  • 139 Nynäs P, Vilpas S. et al. Observational cross-sectional study on Symptoms Associated to Moisture Damage at Workplace: the SAMDAW study protocol. BMJ Open 2019; 9: e026485
  • 140 Oluwole O, Kirychuk SP. et al. Indoor mold levels and current asthma among school-aged children in Saskatchewan, Canada. Indoor Air 2017; 27: 311-319
  • 141 Øya E, Afanou AKJ. et al. Characterization and pro-inflammatory responses of spore and hyphae samples from various mold species. Indoor Air 2018; 28: 28-39
  • 142 Øya E, Becher R. et al. Pro-Inflammatory Responses in Human Bronchial Epithelial Cells Induced by Spores and Hyphal Fragments of Common Damp Indoor Molds. Int J Environ Res Public Health 2019; 16: 1085
  • 143 Øya E, Solhaug A. et al. Pro-inflammatory responses induced by A. fumigatus and A. versicolor in various human macrophage models. J Toxicol Environ Health A 2019; 82: 483-501
  • 144 Pahwa P, Karunanayake CP. et al. Prevalence and associated risk factors of chronic bronchitis in First Nations people. BMC Pulm Med 2017; 17: 95
  • 145 Palot A, Charpin-Kadouch C. et al. [Non allergic disorders associated with domestic moulds]. [Article in French]. Rev Mal Respir 2010; 27: 180-187
  • 146 Park JH, Cox-Ganser JM. Mold exposure and respiratory health in damp indoor environments. Front Biosci (Elite Ed) 2011; 3: 757-771
  • 147 Park JH, Cox-Ganser JM. et al. Bacteria in a water-damaged building: associations of actinomycetes and non-tuberculous mycobacteria with respiratory health in occupants. Indoor Air 2017; 27: 24-33
  • 148 Peat JK, Dickerson J, Li J. Effects of damp and mould in the home on respiratory health: a review of the literature. Allergy 1998; 53: 120-128
  • 149 Pekkanen J, Lampi J. [Moisture and mold damages of buildings in relation to health]. [Article in Finnish]. Duodecim 2015; 131: 1749-1755
  • 150 Piecková E, Jesenská Z. Microscopic fungi in dwellings and their health implications in humans. Ann Agric Environ Med 1999; 6: 1-11
  • 151 Piecková E. Adverse health effects of indoor moulds. Arh Hig Rada Toksikol 2012; 63: 545-549
  • 152 Portnoy JM, Kwak K. et al. Health effects of indoor fungi. Ann Allergy Asthma Immunol 2005; 94: 313-139
  • 153 Portnoy JM, Kennedy K, Barnes CS. Controversies regarding dampness and mold growth in homes. Allergy Asthma Proc 2007; 28: 257-258
  • 154 Rea WJ. A Large Case-series of Successful Treatment of Patients Exposed to Mold and Mycotoxin. Clin Ther 2018; 40: 889-893
  • 155 Reboux G, Bellanger AP. et al. [Moulds in dwellings: health risks and involved species]. [Article in French]. Rev Mal Respir 2010; 27: 169-179
  • 156 Sabino R, Veríssimo C. et al. The role of occupational Aspergillus exposure in the development of diseases. Med Mycol 2019; 57 (Suppl. 02) S196-S205
  • 157 Segura-Medina P, Vargas MH. et al. Mold burden in house dust and its relationship with asthma control. Respir Med 2019; 150: 74-80
  • 158 Seltzer JM, Fedoruk MJ. Health effects of mold in children. Pediatr Clin North Am 2007; 54: 309-333, viii-ix
  • 159 Seo S, Han Y. et al. Infrared camera-proven water-damaged homes are associated with the severity of atopic dermatitis in children. Ann Allergy Asthma Immunol 2014; 113: 549-555
  • 160 Seo S, Kim D. et al. Exploring Household-level Risk Factors for Self-reported Prevalence of Allergic Diseases Among Low-income Households in Seoul, Korea. Allergy Asthma Immunol Res 2014; 6: 421-427
  • 161 Shabankarehfard E, Ostovar A. et al. Air- and Dust-Borne Fungi in Indoor and Outdoor Home of Allergic Patients in a Dust-Storm-Affected Area. Immunol Invest 2017; 46: 577-589
  • 162 Sharpe RA, Thornton CR. et al. Variable risk of atopic disease due to indoor fungal exposure in NHANES 2005-2006. Clin Exp Allergy 2015; 45: 1566-1578
  • 163 Shorter C, Crane J. et al. Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner. Indoor Air 2018; 28: 6-15
  • 164 Simon-Nobbe B, Denk U. et al. The spectrum of fungal allergy. Int Arch Allergy Immunol 2008; 145: 58-86
  • 165 Terčelj M, Salobir B. et al. Fungal exposure in homes of patients with sarcoidosis – an environmental exposure study. Environ Health 2011; 10: 8
  • 166 Terr AI. Sick Building Syndrome: is mould the cause?. Med Mycol 2009; 47 (Suppl. 01) S217-S222
  • 167 Tuuminen T, Rinne KS. Severe Sequelae to Mold-Related Illness as Demonstrated in Two Finnish Cohorts. Front Immunol 2017; 8: 382
  • 168 Ukawa S, Araki A. et al. The relationship between atopic dermatitis and indoor environmental factors: a cross-sectional study among Japanese elementary school children. Int Arch Occup Environ Health 2013; 86: 777-787
  • 169 Verhoeff AP, Burge HA. Health risk assessment of fungi in home environments. Ann Allergy Asthma Immunol 1997; 78: 544-554
  • 170 Vesper S, Cox-Ganser JM. et al. Quantification of mold contamination in multi-level buildings using the Environmental Relative Moldiness Index. J Occup Environ Hyg 2018; 15: 38-43
  • 171 Walser SM, Brenner B. et al. [Environmental health relevance of airborne microorganisms in ambient and indoor air]. [Article in German]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60: 618-624
  • 172 Wang J, Engvall K. et al. Current wheeze, asthma, respiratory infections, and rhinitis among adults in relation to inspection data and indoor measurements in single-family houses in Sweden-The BETSI study. Indoor Air 2017; 27: 725-736
  • 173 Wang J, Pindus M. et al. Dampness, mould, onset and remission of adult respiratory symptoms, asthma and rhinitis. Eur Respir J 2019; 53: 1801921
  • 174 Wu H, Wong JWC. The role of oxidative stress in the growth of the indoor mold Cladosporium cladosporioides under water dynamics. Indoor Air 2020; 30: 117-125
  • 175 Xu F, Yan S. et al. Residential Risk Factors for Atopic Dermatitis in 3- to 6-Year Old Children: A Cross-Sectional Study in Shanghai, China. Int J Environ Res Public Health 2016; 13: 537
  • 176 Zhang X, Norbäck D. et al. Dampness and mold in homes across China: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue among adults. Indoor Air 2019; 29: 30-42
  • 177 Zukiewicz-Sobczak WA. The role of fungi in allergic diseases. Postepy Dermatol Alergol 2013; 30: 42-45
  • 178 Maroni M, Levy F. Definitions. In: Levy F, Maroni M. Hrsg. NATO/CCMS Pilot study on indoor air quality. 4th plenary meeting. Epidemiology and medical management of building-related complaints and illnesses. Oslo: National Institute of Occupational Health; 1992: 160-161
  • 179 Seifert B. Das „sick building“-Syndrom. Öff Gesundh-Wes 1991; 53: 376-382
  • 180 Wiesmüller GA, Gabrio T. Möglichkeiten und Grenzen der gesundheitlichen Bewertung von Schimmelpilzexpositionen im Innenraum. Gefahrstoffe Reinhalt Luft 2014; 74: 391-395
  • 181 Wiesmüller GA, Heinzow B. et al. Möglichkeiten und Grenzen der gesundheitlichen Bewertung von Schimmelexpositionen im Innenraum. Der Bausachverständige 2017; 3: 26-34
  • 182 Hospenthal DR, Kwon-Chung KJ, Bennett JE. Concentrations of airborne Aspergillus compared to the incidence of invasive aspergillosis: lack of correlation. Med Mycol 1998; 36: 165-168
  • 183 Bush RK, Portnoy JM. The role and abatement of fungal allergens in allergic diseases. J Allergy Clin Immunol 2001; 107 (Suppl. 03) S430-S440
  • 184 Kelman BJ, Robbins CA. et al. Risk from inhaled mycotoxins in indoor office and residential environments. Int J Toxicol 2004; 23: 3-10
  • 185 Nielsen KF. Mycotoxin production by indoor molds. Fungal Genet Biol 2003; 39: 103-117
  • 186 Hurraß J, Fischer G, Herr CEW. et al. Stellungnahme zum Beitrag von Carmen Kroczek, Jochen Kern und Hartmut M. Hanauske-Abel Mykotoxine: Thesen. Tagungsband zum 11. Fachkongress der Arbeitsgemeinschaft ökologischer Forschungsinstitute (AG ÖF). Springe-Eldagsen: Eigenverlag 2016, 138–154. Umweltmedizin Hygiene Arbeitsmed 2017; 22: 105-114
  • 187 Cox-Ganser JM, White SK. et al. Respiratory morbidity in office workers in a water-damaged building. Environ Health Perspect 2005; 113: 485-490
  • 188 Dales R, Ruest K. et al. Residential fungal growth and incidence of acute respiratory illness during the first two years of life. Environ Res 2010; 110: 692-698
  • 189 Douwes J, Pearce N. Invited commentary: is indoor mold exposure a risk factor for asthma?. Am J Epidemiol 2003; 158: 203-206
  • 190 Kuyucu S, Saraçlar Y. et al. Epidemiologic characteristics of rhinitis in Turkish children: the International Study of Asthma and Allergies in Childhood (ISAAC) phase 2. Pediatr Allergy Immunol 2006; 17: 269-277
  • 191 Jalbert I, Golebioski B. Environmental aeroallergens and allergic rhino-conjunctivitis. Curr Opin Allergy Clin Immunol 2015; 15: 476-481
  • 192 Brozek JL, Bousquet J. Global Allergy and Asthma European Network; Grading of Recommendations Assessment, Development and Evaluation Working Group. et al. Allergic rhinitis and its impact on asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol 2010; 126: 466-476
  • 193 Fokkens WJ, Lund VJ. et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 2012; 50: 1-12
  • 194 Mari A, Schneider P. et al. Sensitization to fungi: epidemiology, comparative skin tests, and IgE reactivity of fungal extracts. Clin Exp Allergy 2003; 33: 1429-1438
  • 195 Reijula K, Leino M. et al. IgE-mediated allergy to fungal allergens in Finland with special reference to Alternaria alternata and Cladosporium herbarum. Ann Allergy Asthma Immunol 2003; 91: 280-287
  • 196 Torres-Rodríguez JM, Pulido-Marrero Z, Vera-García Y. Respiratory allergy to fungi in Barcelona, Spain: clinical aspects, diagnosis and specific treatment in a general allergy unit. Allergol Immunopathol (Madr) 2012; 40: 295-300
  • 197 Hahm MI, Kim J. et al. Exposure to mould allergens and rhinoconjunctivitis in Korean children. Ped Allergy Immunol 2016; 27: 290-298
  • 198 Jaakkola MS, Quansah R. et al. Association of indoor damness and molds with rhinitis risk: A systematic review and metaanalysis. J Allergy Clin Immunol 2013; 132: 1099-1110
  • 199 Merget R. Allergische und nicht-allergische Erkrankungen der Lungen und Atemwege durch Schimmelpilze im Beruf. Umweltmed Forsch Prax 2001; 16: 95-97
  • 200 Miyazaki D, Fukagawa K. et al. Epidemiological aspects of allergic conjunctivitis. Allergol Int 2020; 69: 487-495
  • 201 Rosario N, Bielory L. Epidemiology of allergic conjunctivitis. Curr Opin Allergy Clin Immunol 2011; 11: 471-476
  • 202 Langen U, Schmitz R, Steppuhn H. Häufigkeit allergischer Erkrankungen in Deutschland. Bundesgesundheitsbl – Gesundheitsforsch – Gesundheitsschutz 2013; 56: 698-706
  • 203 Hu Y, Liu W. et al. Home dampness, childhood asthma, hay fever, and airway symptoms in Shanghai, China: associations, dose-response relationships, and lifestyle's influences. Indoor Air 2014; 24: 450-463
  • 204 Lam A, Wong GW. et al. A GIS-based assessment of environmental influences on allergy development in children. Asia Pac J Public Health 2014; 26: 575-587
  • 205 Fokkens WJ, Lund VJ. et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020; 58 (Suppl. 29) 1-464
  • 206 Infekt-Liga.de. Sinusitis 2010. http://www.infektliga.de/empfehlungen/hno-infektionen/sinusitis/ (Stand: 16.01.2023)
  • 207 Fokkens WJ, Ebbens F, van Drunen CM. Fungus: a role in pathophysiology of chronic rhinosinusitis, disease modifier, a treatment target, or no role at all?. Immunol Allergy Clin North Am 2009; 29: 677-688
  • 208 Chakrabarti A, Denning DW. et al. Fungal rhinosinusitis: a categorization and definitional schema addressing current controversies. Laryngoscope 2009; 119: 1809-1818
  • 209 Green BJ, Beezhold DH. et al. Allergic sensitization in Canadian chronic rhinosinusitis patients. Allergy Asthma Clin Immunol 2014; 10: 15
  • 210 Turner JH, Soudry E. et al. Survival outcomes in acute invasive fungal sinusitis: a systematic review and quantitative synthesis of published evidence. Laryngoscope 2013; 123: 1112-1118
  • 211 Head K, Sharp S. et al. Topical and systemic antifungal therapy for chronic rhinosinusitis. Cochrane Database of Systematic Reviews 2018, Issue 9. Art. No: CD012453
  • 212 Glass D, Amedee RG. Allergic fungal rhinosinusitis: a review. Ochsner J 2011; 11: 271-275
  • 213 Bent JP, Kuhn FA. Diagnosis of Allergic Fungal Sinusitis. Otolaryngol Head Neck Surg 1994; 111: 580-588
  • 214 Ebbens FA, Fokkens WJ. The mold conundrum in chronic rhinosinusitis: where do we stand today?. Curr Allergy Asthma Rep 2008; 8: 93-101
  • 215 Klimek L, Chaker A. et al. Immunodeficiency in chronic rhinosinusitis: An important and often underestimated cause. HNO 2019; 67: 715-730
  • 216 Fokkens WJ, van Drunen C. et al. Role of fungi in pathogenesis of chronic rhinosinusitis: the hypothesis rejected. Curr Opin Otolaryngol Head Neck Surg 2012; 20: 19-23
  • 217 Cohen M, Kofonow J. et al. Biofilms in chronic rhinosinusitis: a review. Am J Rhinol Allergy 2009; 23: 255-260
  • 218 Foreman A, Psaltis AJ. et al. Characterization of bacterial and fungal biofilms in chronic rhinosinusitis. Am J Rhinol Allergy 2009; 23: 556-561
  • 219 Foreman A, Wormald PJ. Different biofilms, different disease? A clinical outcomes study. Laryngoscope 2010; 120: 1701-1706
  • 220 Keir J, Pedelty L, Swift AC. Biofilms in chronic rhinosinusitis: systematic review and suggestions for future research. J Laryngol Otol 2011; 125: 331-337
  • 221 Reponen T, Lockey J. et al. Infant origins of childhood asthma associated with specific molds. J Allergy Clin Immunol 2012; 130: 639-644
  • 222 Vandenbroght L-E, Enaud R. et al. Type 2-high asthma is associated with a specific indoor mycobiome and microbiome. J Allergy Clin Immunol 2021; 147: 1296-1305.e6
  • 223 Baxi SN, Sheehan WJ. et al. Association between fungal spore exposure in inner-city schools and asthma morbidity. Ann Allergy Asthma Immunol 2019; 122: 610-615
  • 224 Castro-Rodriquez JA, Forno E. et al. Risk and protective factors for childhood asthma: what ist the evidence?. J Allergy Clin Immunol Prac 2016; 4: 1111-1122
  • 225 Hägerhed-Engman L, Sigsgaard T. et al. Low home ventilation rate in combination with moldy odor from the building structure increase the risk for allergic symptoms in children. Indoor Air 2009; 19: 184-192
  • 226 Iossifova YY, Reponen T. et al. Mold exposure during infancy as a predictor of potential asthma development. Ann Allergy Asthma Immunol 2009; 102: 131-137
  • 227 Karvonen AM, Hyvärinen A. et al. Moisture damage and asthma: a birth cohort study. Pediatrics 2015; 135: e598-e606
  • 228 Pekkanen J, Hyvärinen A. et al. Moisture damage and childhood asthma: a population-based incident case-control study. Eur Respir J 2007; 29: 509-515
  • 229 Simoni M, Lombardi E. et al. Mould/dampness exposure at home is associated with respiratory disorders in Italian children and adolescents: the SIDRIA-2 Study. Occup Environ Med 2005; 62: 616-622
  • 230 Thacher JD, Gruzieva O. et al. Mold and dampness exposure and allergic outcomes from birth to adolescence: data from the BAMSE cohort. Allergy 2017; 72: 967-974
  • 231 Tischer C, Chen CM, Heinrich J. Association between domestic mould and mould components, and asthma and allergy in children: a systematic review. Eur Respir J 2011; 38: 812-824
  • 232 Halonen M, Stern DA. et al. Alternaria as a major allergen for asthma in children raised in a desert environment. Am J Respir Crit Care Med 1997; 155: 1356-1361
  • 233 Licorish K, Novey HS. et al. Role of Alternaria and Penicillium spores in the pathogenesis of asthma. J Allergy Clin Immunol 1985; 76: 819-825
  • 234 Meng J, Barnes CS, Rosenwasser LJ. et al. Identity of the fungal species present in the homes of asthmatic children. Clin Exp Allergy 2012; 42: 1448-1458
  • 235 Schultze-Werninghaus G, Lévy J. et al. Clinical significance of airborne Alternaria tenuis-spores: seasonal symptoms, positive skin and bronchial challenge tests with Alternaria in subjects with asthma and rhinitis. Experientia Suppl 1987; 51: 153-156
  • 236 Zureik M, Neukirch C. et al. Sensitization to airborne moulds and severity of asthma: cross-sectional study from European Community Respiratory Health Survey. BMJ 2002; 325: 411-414
  • 237 Cazzoletti L, Marcon A. et al. Therapy and Health Economics Group of the European Community Respiratory Health Survey. Asthma severity according to Global Initiative for Asthma and its determinants: an international study. Int Arch Allergy Immunol 2010; 151: 70-79
  • 238 Malling H-J, Agrell B. et al. Diagnosis and immunotherapy of mould allergy. I. Screening for mould allergy. Allergy 1985; 40: 108-114
  • 239 Malling H-J. Diagnosis and immunotherapy of mould allergy. II. Reproducibility and relationship between skin sensitivity estimated by end-point titration and histamine equivalent reaction using skin prick test and intradermal test. Allergy 1985; 40: 354-362
  • 240 Malling H-J. Diagnosis and immunotherapy of mould allergy. IV. Relation between asthma symptoms, spore counts and diagnostic tests. Allergy 1986; 41: 342-350
  • 241 Malling H-J, Dreborg S, Weeke B. Diagnosis and immunotherapy of mould allergy. III. Diagnosis of Cladosporium allergy by means of symptom score, bronchial provocation test, skin prick test, RAST, CRIE and histamine release. Allergy 1986; 41: 57-67
  • 242 Schultze-Werninghaus G. Allergische Atemwegs- und Lungenerkrankungen durch Schimmelpilze. In: Wiesmüller GA, Heinzow B, Herr CEW. Hrsg. Gesundheitsrisiko Schimmelpilze im Innenraum. Heidelberg, München, Landsberg, Frechen, Hamburg: ecomed Medizin; 2013: 182-189
  • 243 Schultze-Werninghaus G, Lévy J. et al. Klinische Bedeutung von Sensibilisierungen gegen Alternaria tenuis bei Asthma bronchiale: Vergleich von Anamnese, Haut-und Provokationsproben mit Sporenhäufigkeit im Aeroplankton – eine retrospektive Analyse. Allergologie 1986; 9: 525-531
  • 244 Bachert C, Kardoff B, Virchow C. Hrsg. Allergische Erkrankungen in der Praxis. Bremen: UNI-MED; 1999
  • 245 Bachert C, Wiesmüller GA. Allergie und Umwelt. Bremen: UNI-MED; 2002
  • 246 Merk HF. Hrsg. Allergologie – Textbuch und Farbatlas (dt. Ausgabe). In: Mygind N, Dahl R, Pedersen S, Thestrup-Pedersen K. eds. Allergology. Berlin, Wien: Blackwell Wissenschaftsverlag; 1998
  • 247 Ring J. Neurodermitis. Landsberg/Lech: ecomed Verlagsgesellschaft; 1998
  • 248 Steiß JO, Lindemann H. et al. Wichtige Aspekte bei der Betreuung chronisch kranker Kinder und Jugendlicher am Beispiel des Asthma bronchiale. Dtsch Med Wochenschr 2013; 138: 2613-2618
  • 249 Kersten W, von Wahl PG. Schimmelpilzallergie. Klinische Untersuchungsergebnisse. Allergologie 1989; 12: 174-178
  • 250 Iversen M, Dahl R. Characteristics of mold allergy. J Investig Allergol Clin Immunol 1995; 5: 205-208
  • 251 Tilburg Bernardes E, Gutierrez MW, Arrieta M-C. The Fungal Microbiome and Asthma. Front Cell Infect Microbiol 2020; 10: 1-16
  • 252 Wang IJ, Guo YL. et al. Environmental risk factors for early infantile atopic dermatitis. Pediatr Allergy Immunol 2007; 18: 441-447
  • 253 Kim H-J, Lee E. et al. Mold elicits atopic dermatitis by reactive oxygen species: Epidemiology and mechanism studies. Clin Immunol 2015; 161: 384-390
  • 254 Wang J, Janson C. et al. Asthma, allergic rhinitis and atopic dermatitis in association with home environment – The RHINE study. Sci Total Environ 2022; 853: 158609
  • 255 Wantke F, Simon-Nobbe B. et al. Contact dermatitis caused by salami skin. Contact Dermatitis 2011; 64: 111-114
  • 256 Larenas-Linnemann D, Baxi S. et al. Clinical Evaluation and Management of Patients with Suspected Fungus Sensitivity. J Allergy Clin Immunol Pract 2016; 4: 405-414
  • 257 Hoff M, Trüeb RM. et al. Immediate-type hypersensitivity reaction to ingestion of mycoprotein (Quorn) in a patient allergic to molds caused by acidic ribosomal protein P2. J Allergy Clin Immunol 2003; 111: 1106-1110
  • 258 Maibach HI. Contact urticaria syndrome from mold on salami casing. Contact Dermatitis 1995; 32: 120-121
  • 259 Shelly WB, Florence R. Chronic urticaria due to mold hypersensitivity: A Study in Cross-Sensitization and Autoerythrocyte Sensitization. Arch Dermatol 1962; 83: 549-558
  • 260 Gomes ML, Morais A, Cavaleiro Rufo J. The association between fungi exposure and hypersensitivity pneumonitis: a systematic review. Porto Biomed J 2021; 6: e117
  • 261 Griese M, Haug M. et al. Hypersensitivity pneumonitis: lessons for diagnosis and treatment of a rare entity in children. Orphanet J Rare Dis 2013; 8: 121
  • 262 Rolke M, Rumpf J. et al. Neue epidemiologische Daten zur exogen-allergischen Alveolitis in Deutschland. Allergologie 2006; 29: 439-442
  • 263 Costabel U, Miyazaki Y. et al. Hypersensitivity pneumonitis. Nat Rev Dis Primers 2020; 6: 65
  • 264 Dott W, Thißen R. et al. Belastung der Arbeitnehmer bei Schimmelpilzsanierungsarbeiten in Innenräumen – Literaturstudie. AZ 612.17TB12 AK Gebäudesanierung. München: Tiefbau-Berufsgenossenschaft; 2004
  • 265 Müller-Wening D. Klinik der exogen-allergischen Alveolitis. Allergologie 1990; 13: 91-103
  • 266 Sennekamp J. Exogen-allergische Alveolitis. In: Letzel St, Nowak D. Hrsg. Handbuch der Arbeitsmedizin. 3. Erg. Lfg. 7/07. Landsberg/Lech: ecomed Medizin; 2007: 1-60
  • 267 Davidson J, McErlane J. et al. Musical instruments, fungal spores and hypersensitivity pneumonitis. QJM 2019; 112: 287-289
  • 268 Mücke W, Lemmen C. Bioaerosole – Risiken durch biologische Luftinhaltsstoffe Teil 3. Umweltmed Forsch Prax 2012; 17: 104-113
  • 269 Sennekamp J. Der aktuelle Katalog der Antigene, Krankheitsbilder und Risikoberufe der exogen-allergischen Alveolitis. Allergologie 2010; 33: 583-594
  • 270 Barnes H, Jones K, Blanc P. The hidden history of hypersensitivity pneumonitis. Eur Respir J 2022; 59: 2100252
  • 271 Nowak D, Angerer A. Exogen-allergische Alveolitis. In: Triebig G, Kentner M, Schulz R. Hrsg. Arbeitsmedizin. Handbuch für Theorie und Praxis. Stuttgart: Gentner Verlag; 2002
  • 272 Trout D, Bernstein J. et al. Bioaerosol lung damage in a worker with repeated exposure to fungi in a water-damaged building. Environ Health Perspect 2001; 109: 641-644
  • 273 Apostolakos MJ, Rossmoore H, Beckett WS. Hypersensitivity pneumonitis from ordinary residential exposures. Environ Health Perspect 2001; 109: 979-981
  • 274 Engelhart S, Rietschel E. et al. Childhood hypersensitivity pneumonitis associated with fungal contamination of indoor hydroponics. Int J Hyg Environ Health 2009; 212: 18-20
  • 275 Jacobs RL, Andrews CP, Coalson JJ. Hypersensitivity pneumonitis: beyond classic occupational disease-changing concepts of diagnosis and management. Ann Allergy Asthma Immunol 2005; 95: 115-128
  • 276 Lee SK, Kim SS. et al. Hypersensitivity pneumonitis caused by Fusarium napiforme in a home environment. Allergy 2000; 55: 1190-1193
  • 277 Thörn A, Lewné M, Belin L. Allergic alveolitis in a school environment. Scand J Work Environ Health 1996; 22: 311-314
  • 278 Koschel D, Lützkendorf L. et al. Antigen-specific IgG antibodies in feather duvet lung. Eur J Clin Invest 2010; 40: 797-802
  • 279 Sennekamp J, Müller-Wening D. et al. Empfehlungen zur Diagnostik der exogen-allergischen Alveolitis. 13. Tagung der Arbeitsgemeinschaft Exogen-Allergische Alveolitis der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin (DGP) und der Deutschen Gesellschaft für Allergologie und Klinische Immunologie (DGAKI). Allergologie 2006; 29: 431-438
  • 280 Sennekamp J, Müller-Wening D. et al. Empfehlungen zur Diagnostik der exogen-allergischen Alveolitis. Arbeitsgemeinschaft Exogen-Allergische Alveolitis der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin e. V. (DGP) und der Deutschen Gesellschaft für Allergologie und Klinische Immunologie (DGAKI). Pneumologie 2007; 61: 52-56
  • 281 Quirce S, Vandenplas O. et al. Occupational hypersensitivity pneumonitis: an EAACI position paper. Allergy 2016; 71: 765-779
  • 282 Joest M, Sennekamp J. Allergische bronchopulmonale Aspergillose (ABPA) und andere allergische bronchopulmonale Mykosen (ABPM). München, Orlando: Dustri; 2020
  • 283 Chowdhary A, Agarwal K. et al. Allergic bronchopulmonary mycosis due to fungi other than Aspergillus: a global overview. Crit Rev Microbiol 2014; 40: 30-48
  • 284 Agarwal R, Dua D. et al. Role of Aspergillus fumigatus-specific IgG in diagnosis and monitoring treatment response in allergic bronchopulmonary aspergillosis. Mycoses 2017; 60: 33-39
  • 285 Singh BP, Banerjee B, Kurup VP. Aspergillus antigens associated with allergic bronchopulmonary aspergillosis. Front Biosci 2003; 8: s102-s109
  • 286 Oshikata C, Watanabe M. et al. Allergic Bronchopulmonary Mycosis due to Exposure to Eurotium herbariorum after the Great East Japan Earthquake. Prehosp Disaster Med 2017; 32: 688-690
  • 287 Paluch M, Lejeune S. et al. High airborne level of Aspergillus fumigatus and presence of azole-resistant TR(34)/L98H isolates in the home of a cystic fibrosis patient harbouring chronic colonisation with azole-resistant H285Y A. fumigatus. J Cyst Fibros 2019; 18: 364-367
  • 288 Rocchi S, Richaud-Thiriez B. et al. Evaluation of mold exposure in cystic fibrosis patients' dwellings and allergic bronchopulmonary risk. J Cyst Fibros 2015; 14: 242-247
  • 289 Sapet A, Normand AC. et al. Is the home environment an important factor in the occurrence of fungal events in cystic fibrosis?. J Cyst Fibros 2015; 14: E16-E18
  • 290 Rosenberg M, Patterson R. et al. Clinical and immunologic criteria for the diagnosis of allergic bronchopulmonary aspergillosis. Ann Intern Med 1977; 86: 405-414
  • 291 Saxena P, Choudhary H. et al. Which are the optimal criteria for the diagnosis of ABPA? A latent class analysis. J Allergy Clin Immunol Pract 2021; 9: 328-335.e1
  • 292 Huttegger I, Crameri R. et al. Die allergischbronchopulmonale Aspergillose bei zystischer Fibrose. Evidenzbasiertes und konsensuelles Leitpapier zur Entscheidungsfindung bei der Diagnostik und Therapie. Monatsschr Kinderheilkd 2006; 154: 1003-1014
  • 293 Steiß JO, Lindemann H. Allergische bronchopulmonale Aspergillose bei zystischer Fibrose. Allergologie 2013; 36: 275-281
  • 294 Lukaszewicz R. et al. Medical algorithm: Aspergillus fumigatus components in the diagnosis of allergic bronchopulmonary aspergillosis. Allergy 2022; 77: 327-330
  • 295 Muthu V, Singh P. et al. Diagnostic cutoffs and Clinical utility of Recombinant Aspergillus fumigatus Antigens in the Diagnosis of Allergic Bronchopulmonary Aspergillosis. J Allergy Clin Immunol Pract 2020; 8: 579-587
  • 296 Menz G, Duchna H-W. Allergische bronchopulmonale Aspergillose (ABPA). Pneumologie 2017; 71: 173-182
  • 297 Köhler D, Schönhofer B. et al. Ein Leitfaden für rationales Handeln in Klinik und Praxis, 2. Auflage. Stuttgart: Georg Thieme Verlag; 2015
  • 298 Menz G, Crameri R, Hense G. Die allergische bronchopulmonale Aspergillose (ABPA). Allergologie 2005; 28: 315-322
  • 299 Heinz WJ. Welche Bedeutung haben Infektionen durch Schimmelpilze?. Umweltmed Forsch Prax 2010; 2: 99-103
  • 300 Rüping MJGT, Vehreschild JJ. et al. Fungiscope – a Global Registry for Rare Fungal Infections. Int J Infect Dis 2008; 12
  • 301 Anonymous Aspergilloma and residual tuberculous cavities – the results of a resurvey. Tubercle 1970; 51: 227-245
  • 302 Sonnenberg P, Murray J. et al. HIV-1 and recurrence, relapse, and reinfection of tuberculosis after cure: a cohort study in South African mineworkers. Lancet 2001; 358: 1687-1693
  • 303 Guinea J, Torres-Narbona M. et al. Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: incidence, risk factors, and outcome. Clin Microbiol Infect 2010; 16: 870-877
  • 304 He HY, Chang S. et al. Significance of Aspergillus spp. isolation from lower respiratory tract samples for the diagnosis and prognosis of invasive pulmonary aspergillosis in chronic obstructive pulmonary disease. Chin Med J (Engl) 2012; 125: 2973-2978
  • 305 Ahmadikia K, Hashemi SJ. et al. The double-edged sword of systemic corticosteroid therapy in viral pneumonia: A case report and comparative review of influenza-associated mucormycosis versus COVID-19 associated mucormycosis. Mycoses 2021; 64: 798-808
  • 306 Coste A, Frérou A. et al. The Extent of Aspergillosis in Critically Ill Patients With Severe Influenza Pneumonia: A Multicenter Cohort Study. Crit Care Med 2021; 49: 934-942
  • 307 Huang L, Zhang Y. et al. Diagnostic value of galactomannan test in non-immunocompromised critically ill patients with influenza-associated aspergillosis: data from three consecutive influenza seasons. Eur J Clin Microbiol Infect Dis 2021; 40: 1899-1907
  • 308 Liu Y, Xie ZZ. et al. Clinical study of invasive pulmonary aspergillosis following influenza A H1N1. Medicine 2021; 100: e26434
  • 309 Maoqing Guo M, Tong Z. Risk Factors Associated with Invasive Pulmonary Mycosis Among Severe Influenza Patients in Beijing City, China. Int J Gen Med 2021; 14: 7381-7390
  • 310 Shi C, Shan Q. et al. Incidence, risk factors and mortality of invasive pulmonary aspergillosis in patients with influenza: A systematic review and meta-analysis. Mycoses 2022; 65: 152-163
  • 311 Baddley JW, Thompson III IGR. et al. Coronavirus Disease 2019 – Associated Invasive Fungal Infection. Open Forum Infect Dis 2021; 8: ofab510
  • 312 Feys S, Almyroudi MP. et al. A Visual and Comprehensive Review on COVID-19-Associated Pulmonary Aspergillosis (CAPA). J Fungi (Basel) 2021; 7: 1067
  • 313 Peláez-García de la Rasilla T, González-Jiménez I. et al. COVID-19 Associated Pulmonary Aspergillosis (CAPA): Hospital or Home Environment as a Source of Life-Threatening Aspergillus fumigatus Infection?. J Fungi (Basel) 2022; 8: 316
  • 314 Rouzé A, Lemaitre E. et al. Invasive pulmonary aspergillosis among intubated patients with SARS‑CoV‑2 or influenza pneumonia: a European multicenter comparative cohort study. Crit Care 2022; 26: 11
  • 315 Sarrazyn C, Dhaese S. et al. Incidence, risk factors, timing, and outcome of influenza versus COVID-19-associated putative invasive aspergillosis. Infect Control Hosp Epidemiol 2021; 42: 1149-1150
  • 316 Savi D, Valente G. et al. Uncommon presentation of allergic bronchopulmonary aspergillosis during the COVID‑19 lockdown: a case report. BMC Pulm Med 2020; 20: 325
  • 317 van de Veerdonk FL, Brüggemann RJM. et al. COVID-19-associated Aspergillus tracheobronchitis: the interplay between viral tropism, host defence, and fungal invasion. Lancet Respir Med 2021; 9: 795-802
  • 318 Vitale RG, Afeltra J. et al. An overview of COVID‑19 related to fungal infections: what do we know after the first year of pandemic?. Braz J Microbiol 2022; 53: 759-775
  • 319 Fischer G. Infektiologisch relevante Fadenpilze. In: Wiesmüller GA, Heinzow B, Herr CEW. Hrsg. Gesundheitsrisiko Schimmelpilze im Innenraum. Heidelberg, München, Landsberg, Frechen, Hamburg: ecomed Medizin; 2013: 51-62
  • 320 Abek D, Grusek E. et al. Onychomykose: Epidemiologie, Pathogenese, Klinik, Mikrobiologie und Therapie. Dtsch Ärztebl 1996; 93: A 2027-A 2032
  • 321 Abek D, Haneke E. et al. Onychomykose. Aktuelle Daten zu Epidemiologie, Erregerspektrum, Risikofaktoren sowie Beeinflussung der Lebensqualität. Dtsch Ärztebl 2000; 97: A 1984-A 1986
  • 322 Mayser P, Gründer K. Das Erregerspektrum der Onychomykosen in der Universitäts-Hautklinik Giessen 1987–1992 und dessen potentielle Bedeutung für eine antimykotische Therapie. Z Hautkr 1993; 68: 716-721
  • 323 Nenoff P. Dermatomykosen durch Schimmelpilze – Tagungsbericht der 16. Tagung der Arbeitsgemeinschaft „Mykologische Laboratoriumsdiagnostik“ der Deutschsprachigen Mykologischen Gesellschaft (DMykG). Der Mikrobiologe 2005; 2: 71-78
  • 324 Ramani R, Srinivas CR. et al. Molds in onychomycosis. Int J Dermatol 1993; 32: 877-878
  • 325 Torres-Rodriguez JM, Madrenys-Brunet N. et al. Aspergillus versicoloras cause of onychomycosis: report of 12 cases and susceptibility testing of antifungal drugs. J Eur Acad Dermatol Venerol 1998; 11: 25-31
  • 326 Benoit D, Peleman R. et al. Mixed community-acquired fungal infection in an apparently healthy patient. Eur J Clin Microbiol Infect Dis 2000; 19: 642-643
  • 327 Chen KY, Ko SC. et al. Pulmonary fungal infection: emphasis on microbiological spectra, patient outcome, and prognostic factors. Chest 2001; 120: 177-184
  • 328 Clancy CJ, Nguyen MH. Acute community-acquired pneumonia due to Aspergillus in presumably immunocompetent hosts: clues for recognition of a rare but fatal disease. Chest 1998; 114: 629-634
  • 329 Staib F, Abel T. et al. Aspergillus-fumigatus-Infektion der Lunge bei Mucoviscidose: Beitrag zur Diagnostik, Epidemiologie, Pathogenese und Prophylaxe. Dtsch Med Wochenschr 2008; 105: 442-445
  • 330 Vandenbos F, Hyvernat H. et al. Pleuropneumopathie communautaire a Aspergillus fumigatus chez une patiente peu immunodeprimée. [Community-acquired pulmonary aspergillosis due to Aspergillus fumigatus in a slightly immunocompromised patient]. Rev Med Interne 2001; 22: 1130-1132
  • 331 Vonberg R, Gastmeier P. Aspergillen im Krankenhaus: Ergebnisse von Outbreak-Analysen. Krankenhaus-Hygiene + Infektionsverhütung 2007; 29: 8-14
  • 332 Fernandez-Ruiz M, Silva JT. et al. Aspergillus tracheobronchitis: report of 8 cases and review of the literature. Medicine (Baltimore) 2012; 91: 261-273
  • 333 Hope WW, Walsh TJ, Denning DW. The invasive and saprophytic syndromes due to Aspergillus spp. Med Mycol 2005; 43 (Suppl. 01) S207-S238
  • 334 Bongomin F, Gago S. et al. Global and Multi-National Prevalence of Fungal Diseases – Estimate Precision. J Fungi (Basel) 2017; 3: 57
  • 335 Lin SJ, Schranz J, Teutsch SM. Aspergillosis case-fatality rate: systematic review of the literature. Clin Infect Dis 2001; 32: 358-366
  • 336 van de Peppel RJ, Visser LG. et al. The burden of Invasive Aspergillosis in patients with haematological malignancy: A meta-analysis and systematic review. J Infect 2018; 76: 550-562
  • 337 Mellinghoff SC, Panse J. et al. Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Ann Hematol 2018; 97: 197-207
  • 338 Patterson TF, Thompson 3rd GR. et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 63: e1-e60
  • 339 Denning DW, Cadranel J. et al. Chronic pulmonary aspergillosis: rationale and clinical guidelines for diagnosis and management. Eur Respir J 2016; 47: 45-68
  • 340 Ullmann AJ, Aguado JM. et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 (Suppl. 01) e1-e38
  • 341 Sprute R, Salzer HJF, Seidel D. CPAnet: the challenges of gaining evidence-based knowledge in chronic pulmonary aspergillosis. Eur Respir J 2022; 59: 2102879
  • 342 Sennekamp J. Differentialdiagnose Organic Dust Toxic Syndrome (ODTS) – exogen-allergische Alveolitis. Allergologie 1996; 19: 111-113
  • 343 Herr C, Bittighofer PM. et al. Effect of microbial aerosols on the human. Schriftenr Ver Wasser Boden Lufthyg 1999; 104: 403-481
  • 344 Malmberg P, Rask-Andersen A, Rosenhall L. Exposure to microorganisms associated with allergic alveolitis and febrile reactions to mold dust in farmers. Chest 1993; 103: 1202-1209
  • 345 Rylander R. Organic dusts and lung reactions – exposure characteristics and mechanisms for disease. Scand J Work Environ Health 1985; 11: 199-206
  • 346 Hien P. Idiopathische pulmonale Hämosiderose. In: Hien P. Hrsg. Praktische Pneumologie für Internisten und Allgemeinmediziner. Heidelberg: Springer; 2000: 623-625
  • 347 Elidemir O, Colasurdo GN. et al. Isolation of Stachybotrys from the lung of a child with pulmonary hemosiderosis. Pediatrics 1999; 104: 964-966
  • 348 Flappan SM, Portnoy J. et al. Infant pulmonary hemorrhage in a suburban home with water damage and mold (Stachybotrys atra). Environ Health Perspect 1999; 107: 927-930
  • 349 Weiss A, Chidekel AS. Acute pulmonary hemorrhage in a Delaware infant after exposure to Stachybotrys atra. Del Med J 2002; 74: 363-368
  • 350 Etzel RA, Montaña E. et al. Acute pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi. Arch Pediatr Adolesc Med 1998; 152: 757-762
  • 351 Vesper S, Dearborn DG. et al. Evaluation of Stachybotrys chartarum in the house of an infant with pulmonary hemorrhage: quantitative assessment before, during, and after remediation. J Urban Health 2000; 77: 68-85
  • 352 Vesper SJ, Varma M. et al. Quantitative polymerase chain reaction analysis of fungi in dust from homes of infants who developed idiopathic pulmonary hemorrhaging. J Occup Environ Med 2004; 46: 596-601
  • 353 Bitnun A, Nosal RM. Stachybotrys chartarum (atra) contamination of the indoor environment: Health implications. Paediatr Child Health 1999; 4: 125-129
  • 354 Centers for Disease Control and Prevention (CDC). Update: Pulmonary hemorrhage/hemosiderosis among infants – Cleveland, Ohio, 1993–1996. MMWR Morb Mortal Wkly Rep 2000; 49: 180-184 http://www.cdc.gov/mmwr/preview/mmwrhtml/mm4909a3.htm (Stand: 06.03.2023)
  • 355 Dearborn DG, Smith PG. et al. Clinical profile of 30 infants with acute pulmonary hemorrhage in Cleveland. Pediatrics 2002; 110: 627-637
  • 356 Kuhn DM, Ghannoum MA. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev 2003; 16: 144-172
  • 357 Centers for Disease Control and Prevention (CDC). Investigation of acute idiopathic pulmonary hemorrhage among infants – Massachusetts, December 2002 – June 2003. MMWR Morb Mortal Wkly Rep 2004; 53: 817-820
  • 358 Etzel RA. Stachybotrys. Curr Opin Pediatr 2003; 15: 103-106
  • 359 Etzel RA. Indoor and outdoor air pollution: tobacco smoke, moulds and diseases in infants and children. Int J Hyg Environ Health 2007; 210: 611-616
  • 360 Chen XY, Sun JM, Huang XJ. Idiopathic pulmonary hemosiderosis in adults: review of cases reported in the latest 15 years. Clin Respir J 2017; 11: 677-681
  • 361 Hossain MA, Ahmed MS, Ghannoum MA. Attributes of Stachybotrys chartarum and its association with human disease. J Allergy Clin Immunol 2004; 113: 200-208; quiz 209
  • 362 McDonnell J, Aronica M. Molds and Respiratory Disease. In: Khatri SB, Pennington EJ. eds. Lung Health and the Exposome. Respiratory Medicine. Cham: Humana; 2022.
  • 363 Persad AS, Stedeford T. et al. A Review of Inhalation Exposure to Mold and Adverse Health Outcomes. J Land Use Environ Law 2018; 19: 557-568 https://ir.law.fsu.edu/jluel/vol19/iss2/15 (Stand: 06.03.2023)
  • 364 Saha BK. Idiopathic pulmonary hemosiderosis: A state of the art review. Respir Med 2021; 176: 106234
  • 365 Saha BK, Bonnier A. et al. Adult patients with idiopathic pulmonary hemosiderosis: a comprehensive review of the literature. Clin Rheumatol 2022; 41: 1627-1640
  • 366 Terr AI. Stachybotrys: relevance to human disease. Ann Allergy Asthma Immunol 2001; 87 (Suppl. 03) 57-63
  • 367 Centers for Disease Control and Prevention (CDC). Facts about Stachybotrys chartarum. Last Reviewed: November 14, 2022. https://www.cdc.gov/mold/stachy.htm (Stand: 06.03.2023)
  • 368 Centers for Disease Control and Prevention (CDC). Availability of case definition for acute idiopathic pulmonary hemorrhage in infants. MMWR Morb Mortal Wkly Rep 2001; 50: 494-495 https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5023a5.htm (Stand: 06.03.2023)
  • 369 LaFreniere K, Gupta V. Idiopathic Pulmonary Hemosiderosis. Treasure Island (FL): StatPearls Publishing; 2022
  • 370 Taytard J, Nathan N. et al. New insights into pediatric idiopathic pulmonary hemosiderosis: the French RespiRare® cohort. Orphanet J Rare Dis 2013; 8: 161
  • 371 Dearborn DG. Chapter 38 Mold. In: Landrigan PJ, Etzel RA. eds. Textbook of Children's Environmental Health. Oxford: Oxford University Press; 2014
  • 372 Dyląg M, Spychała K. et al. Update on Stachybotrys chartarum – Black Mold Perceived as Toxigenic and Potentially Pathogenic to Humans. Biology 2022; 11: 352
  • 373 Kinkade S, Long NA. Acute Bronchitis. Am Fam Physician 2016; 94: 560-565
  • 374 Kim V, Criner GJ. Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 187: 228-237
  • 375 Chrdle A, Mustakim S. et al. Aspergillus bronchitis without significant immunocompromise. Ann N Y Acad Sci 2012; 1272: 73-85
  • 376 Brandt C, Roehmel J. et al. Aspergillus Bronchitis in Patients with Cystic Fibrosis. Mycopathologia 2018; 183: 61-69
  • 377 Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet 2017; 389: 1931-1940
  • 378 Gantois N, Lesaffre A. et al. Factors associated with Pneumocystis colonization and circulating genotypes in chronic obstructive pulmonary disease patients with acute exacerbation or at stable state and their homes. Med Mycol 2021; 60: myab070
  • 379 Hulin M, Simoni M. et al. Respiratory health and indoor air pollutants based on quantitative exposure assessments. Eur Respir J 2012; 40: 1033-1045
  • 380 Fréalle E, Reboux G. et al. Impact of domestic mould exposure on Aspergillus biomarkers and lung function in patients with chronic obstructive pulmonary disease. Environ Res 2021; 195: 110850
  • 381 Dauchy C, Bautin N. et al. Emergence of Aspergillus fumigatus azole resistance in azole-naïve patients with chronic obstructive pulmonary disease and their homes. Indoor Air 2018; 28: 298-306
  • 382 Kosmidis C, Hashad R. et al. Impact of self-reported environmental mould exposure on COPD outcomes. Pulmonology 2023; 29: 375-384
  • 383 Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie COPD – Leitlinienreport, 2. Auflage, Version 1. 2021 https://www.leitlinien.de/themen/copd (Stand: 06.03.2023)
  • 384 Vestbo J, Hurd SS. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013; 187: 347-365
  • 385 Vogelmeier C, Buhl R. et al. Leitlinie zur Diagnostik und Therapie von Patienten mit chronisch obstruktiver Bronchitis und Lungenemphysem (COPD) [Guideline for the Diagnosis and Treatment of COPD Patients – Issued by the German Respiratory Society and the German Atemwegsliga in Cooperation with the Austrian Society of Pneumology]. Pneumologie 2018; 72: 253-308
  • 386 Leung C, Sin DD. Asthma-COPD Overlap: What Are the Important Questions?. Chest 2022; 161: 330-344
  • 387 Papaiwannou A, Zarogoulidis P. et al. Asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS): current literature review. J Thorac Dis 2014; 6 (Suppl. 01) S146-S151
  • 388 Korkalainen M, Täubel M. et al. Synergistic proinflammatory interactions of microbial toxins and structural components characteristic to moisture-damaged buildings. Indoor Air 2017; 27: 13-23
  • 389 Global Initiative for Asthma. Global strategy for asthma management and prevention. https://ginasthma.org/wp-content/uploads/2023/07/GINA-2023-Full-report-23_07_06-WMS.pdf (Stand: 27.07.2023)
  • 390 Norbäck D, Lu C. et al. Lifetime-ever pneumonia among pre-school children across China – Associations with pre-natal and post-natal early life environmental factors. Environ Res 2018; 167: 418-427
  • 391 Zhuge Y, Qian H. et al. Residential risk factors for childhood pneumonia: A cross-sectional study in eight cities of China. Environ Int 2018; 116: 83-91
  • 392 Godoy MCB, Pria HRFD. et al. Invasive Fungal Pneumonia in Immunocompromised Patients. Radiol Clin North Am 2022; 60: 497-506
  • 393 Ali SA, Jabeen K. et al. Invasive pulmonary aspergillosis in critically ill patients with pneumonia due to COVID-19, influenza, and community-acquired pneumonia: A prospective observational study. Curr Med Mycol 2022; 8: 16-24
  • 394 Lai CC, Yu WL. COVID-19 associated with pulmonary aspergillosis: A literature review. J Microbiol Immunol Infect 2021; 54: 46-53
  • 395 Sridhar V, Rajagopalan N. et al. Acute community acquired Aspergillus pneumonia in a presumed immunocompetent host. BMJ Case Rep 2012; 2012: bcr0920114866
  • 396 Mendell MJ, Cozen M. et al. Indicators of moisture and ventilation system contamination in US office buildings as risk factors for respiratory and mucous membrane symptoms: analyses of the EPA BASE data. J Occup Environ Hyg 2006; 3: 225-233
  • 397 Cummings KJ, Fink JN. et al. Vocal cord dysfunction related to water-damaged buildings. J Allergy Clin Immunol Pract 2013; 1: 46-50
  • 398 Ebbehøj NE, Meyer HW. et al. Molds in floor dust, building-related symptoms, and lung function among male and female schoolteachers. Indoor Air 2005; 15 (Suppl. 10) 7-16
  • 399 Smedbold HT, Ahlen C. et al. Sign of eye irritation in female hospital workers and the indoor environment. Indoor Air 2001; 11: 223-231
  • 400 Korpi A, Kasanen JP. et al. Sensory irritating potency of some microbial volatile organic compounds (MVOCs) and a mixture of five MVOCs. Arch Environ Health 1999; 54: 347-352
  • 401 Baser S, Fisekci FE. et al. Respiratory effects of chronic animal feed dust exposure. J Occup Health 2003; 45: 324-330
  • 402 Bascom R. The upper respiratory tract: mucous membrane irritation. Environ Health Perspect 1991; 95: 39-44
  • 403 Rudblad S, Andersson K. et al. Nasal mucosal histamine reactivity among teachers six years after working in a moisture-damaged school. Scand J Work Environ Health 2005; 31: 52-58
  • 404 Herr CE, zur Nieden A. et al. Effects of bioaerosol polluted outdoor air on airways of residents: a cross sectional study. Occup Environ Med 2003; 60: 336-342
  • 405 Radon K, Danuser B. et al. Respiratory symptoms in European animal farmers. Eur Respir J 2001; 17: 747-754
  • 406 Reijula K. Exposure to microorganisms: diseases and diagnosis. Indoor Air 2010; 8 (Suppl. 04) 40-44
  • 407 Storey E, Dangman KH. et al. Guidance for Clinicians on the Recognition and Management of Health Effects Related to Mold Exposure and Moisture Indoors. Farmington, CT: University of Connecticut Health Center Division of Occupational and Environmental Medicine, Center for Indoor Environments and Health; 2004. https://health.uconn.edu/occupational-environmental/wp-content/uploads/sites/25/2015/12/mold_guide.pdf (Stand: 06.03.2023)
  • 408 Douwes J, van der Sluis B. et al. Fungal extracellular polysaccharides in house dust as a marker for exposure to fungi: relations with culturable fungi, reported home dampness, and respiratory symptoms. J Allergy Clin Immunol 1999; 103: 494-500
  • 409 Douwes J, Zuidhof A. et al. (1-->3)-beta-D-glucan and endotoxin in house dust and peak variability in children. Am J Respir Crit Care Med 2000; 162: 1348-1354
  • 410 Johannessen LN, Nilsen AM, Løvik M. The mycotoxins citrinin and gliotoxin differentially affect production of the pro-inflammatory cytokines tumour necrosis factor-alpha and interleukin-6, and the anti-inflammatory cytokine interleukin-10. Clin Exp Allergy 2005; 35: 782-789
  • 411 Lu R, Tendal K. et al. Strong variance in the inflammatory and cytotoxic potentials of Penicillium and Aspergillus species from cleaning workers' exposure in nursing homes. Sci Total Environ 2020; 724: 138231
  • 412 Heffner DK. The cause of sarcoidosis: the centurial enigma solved. Ann Diagn Pathol 2007; 11: 142-152
  • 413 Marshall TG, Marshall FE. Sarcoidosis succumbs to antibiotics – implications for autoimmune disease. Autoimmun Rev 2004; 3: 295-300
  • 414 Stopinšek S, Ihan A. et al. Fungal cell wall agents and bacterial lipopolysaccharide in organic dust as possible risk factors for pulmonary sarcoidosis. J Occup Med Toxicol 2016; 11: 46
  • 415 Terčelj M, Salobir B, Rylander R. Microbial antigen treatment in sarcoidosis – a new paradigm?. Med Hypotheses 2008; 70: 831-834
  • 416 Eishi Y, Suga M. et al. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J Clin Microbiol 2002; 40: 198-204
  • 417 McFarland RB, Goodman SB. Sporotrichosis and sarcoidosis. Report of a case with comment upon possible relationships between sarcoidosis and fungus infections. Arch Intern Med 1963; 112: 760-765
  • 418 Rizik SN. Acute anterior uveitis in a patient with sarcoidosis and high Toxoplasma dye test titre. Br J Ophthalmol 1965; 49: 34-36
  • 419 Shields LH. Disseminated cryptococcosis producing a sarcoid type reaction: the report of a case treated with amphotericin B. Arch Intern Med 1959; 104: 763-770
  • 420 Kern DG, Neill MA. et al. Investigation of a unique time-space cluster of sarcoidosis in firefighters. Am Rev Respir Dis 1993; 148: 974-980
  • 421 Kucera GP, Rybicki BA. et al. Occupational risk factors for sarcoidosis in African-American siblings. Chest 2003; 123: 1527-1535
  • 422 Laney AS, Cragin LA. et al. Sarcoidosis, asthma, and asthma-like symptoms among occupants of a historically water-damaged office building. Indoor Air 2009; 19: 83-90
  • 423 Prezant DJ, Dhala A. et al. The incidence, prevalence, and severity of sarcoidosis in New York City firefighters. Chest 1999; 116: 1183-1193
  • 424 Terčelj M, Salobir B. et al. Antifungal medication is efficient in the treatment of sarcoidosis. Ther Adv Respir Dis 2011; 5: 157-162
  • 425 Calender A, Weichhart T. et al. Current Insights in Genetics of Sarcoidosis: Functional and Clinical Impacts. J Clin Med 2020; 9: 2633
  • 426 Rossman MD, Thompson B. et al. HLA and environmental interactions in sarcoidosis. Sarcoidosis. Vasc Diffuse Lung Dis 2008; 25: 125-132
  • 427 Rybicki BA, Iannuzzi MC. Epidemiology of Sarcoidosis: Recent Advances and Future Prospects. Semin Respir Crit Care Med 2007; 28: 22-35
  • 428 Saidha S, Sotirchos ES, Eckstein C. Etiology of Sarcoidosis: does infection play a role?. Yale J Biol Med 2012; 85: 133-141
  • 429 Taskar V, Coultas D. Exposures and Idiopathic Lung Disease. Semin Respir Crit Care Med 2008; 29: 670-679
  • 430 Terčelj M, Salobir B. et al. Inflammatory markers and pulmonary granuloma infiltration in sarcoidosis. Respirology 2014; 19: 225-230
  • 431 Hodgson MJ, Flannigan B. Occupational respiratory disease. In: Flannigan B, Robert A, Samson J, Miller D. eds. Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control, Second Edition. London: CRC Press; 2011
  • 432 Newman LS, Rose CS, Maier LA. Sarcoidosis. N Engl J Med 1997; 336: 1224-1234
  • 433 Newman LS, Rose CS. et al. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med 2004; 170: 1324-1330
  • 434 Ortiz C, Hodgson MJ, McNally D, Storey E. A case-control study of sarcoidosis. In: Johanning E. ed. Bioaerosols, Fungi and Mycotoxins: Health Effects, Assessment, Prevention and Control. Proceedings of the Third International Conference on Bio-aerosols. New York, NY: Mount Sinai School of Medicine, Federal Occupational Health; 1999: 476-481
  • 435 Rybicki BA, Major M. et al. Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization. Am J Epidemiol 1997; 145: 234-241
  • 436 Lorenz W, Sigrist G. et al. A hypothesis for the origin and pathogenesis of rheumatoid diseases. Rheumatol Int 2006; 26: 641-654
  • 437 Lorenz W, Buhrmann C. et al. Bacterial lipopolysaccharides form procollagen-endotoxin complexes that trigger cartilage inflammation and degeneration: implications for the development of rheumatoid arthritis. Arthritis Res Ther 2013; 15: R111
  • 438 Luosujarvi RA, Husman TM. et al. Joint symptoms and diseases associated with moisture damage in a health center. Clin Rheumatol 2003; 22: 381-385
  • 439 Myllykangas-Luosujarvi R, Seuri M. et al. A cluster of inflammatory rheumatic diseases in a moisture-damaged office. Clin Exp Rheumatol 2002; 20: 833-836
  • 440 Jahreis S, Kuhn S. et al. Mold metabolites drive rheumatoid arthritis in mice via promotion of IFN-gamma- and IL-17-producing T cells. Food Chem Toxicol 2017; 109: 405-413
  • 441 Lieberman A, Curtis L. Mold Exposure and Mitochondrial Antibodies. Altern Ther Health Med 2020; 26: 4-47
  • 442 Kraft S, Buchenauer L, Polte T. Mold, Mycotoxins and a Dysregulated Immune System: A Combination of Concern?. Int J Mol Sci 2021; 22: 12269
  • 443 Janik E, Niemcewicz M. et al. Molecular Aspects of Mycotoxins – A Serious Problem for Human Health. Int J Mol Sci 2020; 21: 8187
  • 444 Pitt JI, Miller JD. A Concise History of Mycotoxin Research. J Agric Food Chem 2017; 65: 7021-7033
  • 445 Aleksic B, Draghi M. et al. Aerosolization of Mycotoxins after Growth of Toxinogenic Fungi on Wallpaper. Appl Environ Microbiol 2017; 83: e01001-1017
  • 446 Fromme H, Gareis M. et al. Overall internal exposure to mycotoxins and their occurrence in occupational and residential settings – an overview. Int J Hyg Environ Health 2016; 219: 143-165
  • 447 Niculita-Hirzel H, Hantier G. et al. Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry. Toxins 2016; 8: 370
  • 448 Mayer S, Engelhart S. et al. The significance of mycotoxins in the framework of assessing workplace related risks. Mycotox Res 2008; 24: 151-164
  • 449 Centers for Disease Control and Prevention (CDC). Basic Facts about Mold and Dampness. Last Reviewed: November 14, 2022. https://www.cdc.gov/mold/faqs.htm (Stand: 06.03.2023)
  • 450 Teubel R, Heinzow B. et al. Relevance of indoor exposure of mycotoxins for human health. In: Proceedings of Healthy Buildings Europe 2023, Aachen, Germany 2023. Paper ID: 277. 1-7
  • 451 Chang C, Gershwin ME. The Myth of Mycotoxins and Mold Injury. Clin Rev Allergy Immunol 2019; 57: 449-455
  • 452 Harbison RD, Stedeford T. et al. Toxicology and Risk Assessment of Mycotoxins. J Land Use Environmental Law 2018; 19: No.2 https://ir.law.fsu.edu/jluel/vol19/iss2/9 (Stand: 06.03.2023)
  • 453 Page E, Trout D. Mycotoxins and Building-Related Illness. J Occup Environ Med 1998; 40: 761-763
  • 454 Thiboldeaux R. Indoor fungal infestations and mycotoxicity: guidance for public health professionals and industrial hygienists. Wisconsin Bureau of Environmental and Occupational Health, Department of Health and Family Services; 2004. https://www.dhs.wisconsin.gov/publications/p4/p45074.pdf (Stand: 06.03.2023)
  • 455 Bennett JW, Inamdar AA. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?. Toxins (Basel) 2015; 7: 3785-3804
  • 456 Chapman JA, Terr AI. et al. Toxic mold: phantom risk vs science. Ann Allergy Asthma Immunol 2003; 91: 222-232
  • 457 Fung F, Clark RF. Health effects of mycotoxins: a toxicological overview. J Toxicol Clin Toxicol 2004; 42: 217-234
  • 458 Hendry KM, Cole EC. A review of mycotoxins in indoor air. J Toxicol Environ Health 1993; 38: 183-198
  • 459 Khalili B, Montanaro MT, Bardana Jr EJ. Inhalational mold toxicity: fact or fiction? A clinical review of 50 cases. Ann Allergy Asthma Immunol 2005; 95: 239-246
  • 460 Robbins CA, Swenson LJ. et al. Health effects of mycotoxins in indoor air: a critical review. Appl Occup Environ Hyg 2000; 15: 773-784
  • 461 Afanou AK, Straumfors A, Eduard W. Fungal aerosol composition in moldy basements. Indoor Air 2019; 29: 780-790
  • 462 American Academy of Pediatrics, Committee on Environmental Health. Toxic effects of indoor molds. Pediatrics 1998; 101: 712-714
  • 463 Täubel M, Hyvärinen A. Chapter 18 – Occurrence of Mycotoxins in Indoor Environments. In: Viegas C, Pinheiro AC, Sabino R, Viegas S, Brandão J, Veríssimo C. eds. Environmental Mycology in Public Health. Cambridge, Massachusetts: Academic Press; 2016: 299-323
  • 464 Vaali K, Tuomela M. et al. Toxic Indoor Air Is a Potential Risk of Causing Immuno Suppression and Morbidity – A Pilot Study. J Fungi (Basel) 2022; 8: 104
  • 465 Piecková E. Mycotoxins and Their Inhalatory Intake Risk. In: Singh K, Srivastava N. eds. Recent Trends in Human and Animal Mycology. Singapore: Springer; 2019.
  • 466 Araki A, Kanazawa A. et al. The relationship between exposure to microbial volatile organic compound and allergy prevalence in single-family homes. Sci Total Environ 2012; 423: 18-26
  • 467 Meklin T, Husman T. et al. Indoor air microbes and respiratory symptoms of children in moisture damaged and reference schools. Indoor Air 2002; 12: 175-183
  • 468 Sagunski H. Mikrobielle flüchtige organische Verbindungen: Expositionsindikatoren bei Schimmelpilzbefall in Innenräumen?. Umweltmed Forsch Prax 1997; 2: 95-100
  • 469 Kaesler C, Wiesmüller GA. MVOC als mögliche Indikatoren für Feuchtigkeitsschäden. In: Wiesmüller GA, Heinzow B, Herr CEW. Hrsg. Gesundheitsrisiko Schimmelpilze im Innenraum. Heidelberg, München, Landsberg, Frechen, Hamburg: ecomed Medizin; 2013: 230-240
  • 470 Macher J. Bioaerosols: assessment and control. American Conference of Governmental Industrial Hygienists. Cincinnati: ACGIH; 1999
  • 471 Mücke W, Lemmen C. VII – 4.2 Umweltmedizinische Bedeutung von Geruchsstoffen – Duftstoffe, Innenräume, Arbeitsplätze, Umwelt. In: Wichmann H-E, Schlipköter H-W, Füllgraf G. Hrsg. Handbuch der Umweltmedizin. Landsberg/Lech: ecomed Verlagsgesellschaft; 2011: 1-78
  • 472 Pluschke P. Indoor Air Pollution, Bd 4. Heidelberg: Springer Verlag; 2004
  • 473 Choi H, Schmidbauer N, Bornehag CG. Non-microbial sources of microbial volatile organic compounds. Environ Res 2016; 148: 127-136
  • 474 Schleibinger H, Laußmann D. et al. Sind MVOC geeignete Indikatoren für einen verdeckten Schimmelpilzbefall?. Umweltmed Forsch Prax 2004; 9: 151-161
  • 475 Schleibinger H, Laussmann D. et al. Emission patterns and emission rates of MVOC and the possibility for predicting hidden mold damage?. Indoor Air 2005; 15 (Suppl. 09) 98-104
  • 476 Schleibinger H, Laussmann D. et al. Microbial volatile organic compounds in the air of moldy and mold-free indoor environments. Indoor Air 2008; 18: 113-124
  • 477 Schuchardt S, Strube A. Microbial volatile organic compounds in moldy interiors: a long-term climate chamber study. J Basic Microbiol 2013; 53: 532-538
  • 478 Górny RL. Microbiological Corrosion of Buildings. A Guide of Detection, Health Hazards and Mitigation. Abindon, Florida: CRC Press; 2021
  • 479 Heinzow B, Walker G. Gesundheitliche Bedeutung der MVOC. In: Wiesmüller GA, Heinzow B, Herr CEW. Hrsg. Gesundheitsrisiko Schimmelpilze im Innenraum. Heidelberg, München, Landsberg, Frechen, Hamburg: ecomed Medizin; 2013: 241-260
  • 480 Korpi A, Järnberg J, Pasanen AL. The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals. 138. Microbial volatile organic compounds (MVOCs). Arbete och Hälsa 2006; 13
  • 481 Korpi A, Järnberg J, Pasanen AL. Microbial volatile organic compounds. Crit Rev Toxicol 2009; 39: 139-193
  • 482 Winneke G. Geruchsstoffe. In: Wichmann HE, Schlipköter HW, Fülgraff G. Hrsg. Handbuch der Umweltmedizin. 3. Erg. Lfg. Landsberg/Lech: ecomed Verlagsgesellschaft; 1994
  • 483 Wiesmüller GA, Heinzow B, Herr CEW. Befindlichkeitsstörungen in Innenräumen. In: Wiesmüller GA, Heinzow B, Herr CEW. Hrsg. Gesundheitsrisiko Schimmelpilze im Innenraum. Heidelberg, München, Landsberg, Frechen, Hamburg: ecomed Medizin; 2013: 313-320
  • 484 Mücke W, Lemmen C. VII – 4.1 Duft und Geruch – Physiologie des Riechens und Eigenschaften von Geruchsstoffen. In: Wichmann H-E, Schlipköter H-W, Füllgraf G. Hrsg. Handbuch der Umweltmedizin. Landsberg/Lech: ecomed Verlagsgesellschaft; 2010: 1-46
  • 485 Dalton P, Hummel T. Chemosensory function and response in idiopathic environmental intolerance. Occup Med 2000; 15: 539-556
  • 486 Gross R, Löffler M. Prinzipien der Medizin. Eine Übersicht ihrer Grundlagen und Methoden. Berlin, Heidelberg, New York: Springer; 1997
  • 487 Lipkin M. Functional or organic? A pointless question. Ann Intern Med 1969; 71: 1013-1017
  • 488 Wiesmüller GA, Hornberg C. Umweltmedizinische Syndrome. Bundesgesundheitsbl 2017; 60: 597-604
  • 489 Ahearn DG, Crow SA. et al. Fungal colonization of fiberglass insulation in the air distribution system of a multi-story office building: VOC production and possible relationship to a sick building syndrome. J Ind Microbiol 1996; 16: 280-285
  • 490 Al-Ahmad M, Manno M. et al. Symptoms after mould exposure including Stachybotrys chartarum, and comparison with darkroom disease. Allergy 2010; 65: 245-255
  • 491 Ando M. [Indoor air and human health – sick house syndrome and multiple chemical sensitivity]. [Article in Japanese]. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku 2002; (120) 6-38
  • 492 Assoulin-Daya Y, Leong A. et al. Studies of sick building syndrome. IV. Mycotoxicosis. J Asthma 2002; 39: 191-201
  • 493 Bholah R, Subratty AH. Indoor biological contaminants and symptoms of sick building syndrome in office buildings in Mauritius. Int J Environ Health Res 2002; 12: 93-98
  • 494 Christen K. Mold growth linked to airtight building designs. Environ Sci Technol 2002; 36: 95A-96A
  • 495 Cooley JD, Wong WC. et al. Correlation between the prevalence of certain fungi and sick building syndrome. Occup Environ Med 1998; 55: 579-584
  • 496 Ebbehøj NE, Hansen MØ. et al. Building-related symptoms and molds: a two-step intervention study. Indoor Air 2002; 12: 273-277
  • 497 Engvall K, Norrby C, Norbäck D. Ocular, airway, and dermal symptoms related to building dampness and odors in dwellings. Arch Environ Health 2002; 57: 304-310
  • 498 Fu X, Norbäck D. et al. Association between indoor microbiome exposure and sick building syndrome (SBS) in junior high schools of Johor Bahru, Malaysia. Sci Total Environ 2021; 753: 141904
  • 499 Gottschalk C, Bauer J, Meyer K. Detection of satratoxin g and h in indoor air from a water-damaged building. Mycopathologia 2008; 166: 103-107
  • 500 Harrison J, Pickering CA. et al. An investigation of the relationship between microbial and particulate indoor air pollution and the sick building syndrome. Respir Med 1992; 86: 225-235
  • 501 Hiipakka DW, Buffington JR. Resolution of sick building syndrome in a high-security facility. Appl Occup Environ Hyg 2000; 15: 635-643
  • 502 Hintikka EL. The role of stachybotrys in the phenomenon known as sick building syndrome. Adv Appl Microbiol 2004; 55: 155-173
  • 503 Johanning E. Indoor moisture and mold-related health problems. Eur Ann Allergy Clin Immunol 2004; 36: 182-185
  • 504 Kanazawa A, Saijo Y. et al. Nationwide study of sick house syndrome: comparison of indoor environment of newly built dwellings between Sapporo city and Southern areas including those in Honshu and Kyushu. Nihon Eiseigaku Zasshi 2010; 65: 447-458
  • 505 Kielb C, Lin S. et al. Building-related health symptoms and classroom indoor air quality: a survey of school teachers in New York State. Indoor Air 2015; 25: 371-380
  • 506 Kilburn KH. Role of molds and mycotoxins in being sick in buildings: neurobehavioral and pulmonary impairment. Adv Appl Microbiol 2004; 55: 339-359
  • 507 Kishi R, Saijo Y. et al. Regional differences in residential environments and the association of dwellings and residential factors with the sick house syndrome: a nationwide cross-sectional questionnaire study in Japan. Indoor Air 2009; 19: 243-254
  • 508 Laumbach RJ, Kipen HM. Bioaerosols and sick building syndrome: particles, inflammation, and allergy. Curr Opin Allergy Clin Immunol 2005; 5: 135-139
  • 509 Li CS, Hsu CW, Tai ML. Indoor pollution and sick building syndrome symptoms among workers in day-care centers. Arch Environ Health 1997; 52: 200-207
  • 510 Linz DH, Pinney SM. et al. Cluster analysis applied to building-related illness. J Occup Environ Med 1998; 40: 165-171
  • 511 Lu C, Deng Q. et al. Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China. Sci Total Environ 2016; 560-561: 186-96
  • 512 Lukcso D, Guidotti TL. et al. Indoor environmental and air quality characteristics, building-related health symptoms, and worker productivity in a federal government building complex. Arch Environ Occup Health 2016; 71: 85-101
  • 513 Mahmoudi M, Gershwin ME. Sick building syndrome. III. Stachybotrys chartarum. J Asthma 2000; 37: 191-198
  • 514 McGrath JJ, Wong WC. et al. Continually measured fungal profiles in sick building syndrome. Curr Microbiol 1999; 38: 33-36
  • 515 Meyer HW, Würtz H. et al. Molds in floor dust and building-related symptoms in adolescent school children. Indoor Air 2004; 14: 65-72
  • 516 Meyer HW, Würtz H. et al. Molds in floor dust and building-related symptoms among adolescent school children: a problem for boys only?. Indoor Air 2005; 15 (Suppl. 10) 17-24
  • 517 Nakayama K, Morimoto K. Relationship between, lifestyle, mold and sick building syndromes in newly built dwellings in Japan. Int J Immunopathol Pharmacol 2007; 20 (Suppl. 02) 35-43
  • 518 Nakayama K, Morimoto K. [Risk factor for lifestyle and way of living for symptoms of epidemiological survey in Japan]. [Article in Japanese]. Nihon Eiseigaku Zasshi 2009; 64: 689-698
  • 519 Niedoszytko M, Chełmińska M, Chełmiński K. [Fungal allergy. Part I]. [Article in Polish]. Pol Merkur Lekarski 2002; 12: 241-4
  • 520 Nordin S. Mechanisms underlying nontoxic indoor air health problems: A review. Int J Hyg Environ Health 2020; 226: 113489
  • 521 Ochmański W, Barabasz W. [Microbiological threat from buildings and rooms and its influence on human health (sick building syndrome)]. [Article in Polish]. Przegl Lek 2000; 57: 419-423
  • 522 Page EH, Trout DB. The role of Stachybotrys mycotoxins in building-related illness. AIHAJ 2001; 62: 644-648
  • 523 Park JH, Cox-Ganser J. et al. Fungal and endotoxin measurements in dust associated with respiratory symptoms in a water-damaged office building. Indoor Air 2006; 16: 192-203
  • 524 Rea WJ, Didriksen N. et al. Effects of toxic exposure to molds and mycotoxins in building-related illnesses. Arch Environ Health 2003; 58: 399-405
  • 525 Reijula K. Moisture-problem buildings with molds causing work-related diseases. Adv Appl Microbiol 2004; 55: 175-189
  • 526 Rylander R. Microbial cell wall agents and sick building syndrome. Adv Appl Microbiol 2004; 55: 139-154
  • 527 Sahlberg B, Mi YH, Norbäck D. Indoor environment in dwellings, asthma, allergies, and sick building syndrome in the Swedish population: a longitudinal cohort study from 1989 to 1997. Int Arch Occup Environ Health 2009; 82: 1211-1218
  • 528 Sahlberg B, Wieslander G, Norbäck D. Sick building syndrome in relation to domestic exposure in Sweden – a cohort study from 1991 to 2001. Scand J Public Health 2010; 38: 232-238
  • 529 Sahlberg B, Norbäck D. et al. Onset of mucosal, dermal, and general symptoms in relation to biomarkers and exposures in the dwelling: a cohort study from 1992 to 2002. Indoor Air 2012; 22: 331-338
  • 530 Sahlberg B, Gunnbjörnsdottir M. et al. Airborne molds and bacteria, microbial volatile organic compounds (MVOC), plasticizers and formaldehyde in dwellings in three North European cities in relation to sick building syndrome (SBS). Sci Total Environ 2013; 444: 433-440
  • 531 Saijo Y, Yoshida T, Kishi R. [Dampness, biological factors and sick house syndrome]. [Article in Japanese]. Nihon Eiseigaku Zasshi 2009; 64: 665-671
  • 532 Sayan HE, Dülger S. Evaluation of the relationship between sick building syndrome complaints among hospital employees and indoor environmental quality. Med Lav 2021; 112: 153-161
  • 533 Scheel CM, Rosing WC, Farone AL. Possible sources of sick building syndrome in a Tennessee middle school. Arch Environ Health 2001; 56: 413-417
  • 534 Schwab CJ, Straus DC. The roles of Penicillium and Aspergillus in sick building syndrome. Adv Appl Microbiol 2004; 55: 215-238
  • 535 Seki A, Takigawa T. et al. [Review of sick house syndrome]. [Article in Japanese]. Nihon Eiseigaku Zasshi 2007; 62: 939-948
  • 536 Shoemaker RC, House DE. A time-series study of sick building syndrome: chronic, biotoxin-associated illness from exposure to water-damaged buildings. Neurotoxicol Teratol 2005; 27: 29-46
  • 537 Shoemaker RC, House DE. Sick building syndrome (SBS) and exposure to water-damaged buildings: time series study, clinical trial and mechanisms. Neurotoxicol Teratol 2006; 28: 573-588
  • 538 Smedje G, Wang J. et al. SBS symptoms in relation to dampness and ventilation in inspected single-family houses in Sweden. Int Arch Occup Environ Health 2017; 90: 703-711
  • 539 Straus DC, Cooley JD. et al. Studies on the role of fungi in Sick Building Syndrome. Arch Environ Health 2003; 58: 475-478
  • 540 Straus DC. The possible role of fungal contamination in sick building syndrome. Front Biosci (Elite Ed) 2011; 3: 562-580
  • 541 Takeda M, Saijo Y. et al. Relationship between sick building syndrome and indoor environmental factors in newly built Japanese dwellings. Int Arch Occup Environ Health 2009; 82: 583-593
  • 542 Tsai YJ, Gershwin ME. The sick building syndrome: what is it when it is?. Compr Ther 2002; 28: 140-144
  • 543 Tuuminen T. The Roles of Autoimmunity and Biotoxicosis in Sick Building Syndrome as a "Starting Point" for Irreversible Dampness and Mold Hypersensitivity Syndrome. Antibodies (Basel) 2020; 9: 26
  • 544 Wilson SC, Carriker CG. et al. Culturability and toxicity of sick building syndrome-related fungi over time. J Occup Environ Hyg 2004; 1: 500-504
  • 545 Nakayama Y, Nakaoka H. et al. Prevalence and risk factors of pre-sick building syndrome: characteristics of indoor environmental and individual factors. Environ Health Prev Med 2019; 24: 77
  • 546 Bischof W, Bullinger-Naber M. et al. Expositionen und gesundheitliche Beeinträchtigungen in Bürogebäuden. Stuttgart: Fraunhofer IRB Verlag; 2003
  • 547 Bischof W, Wiesmüller GA. Sick Building Syndrome (SBS). In: Albers K-J, Recknagel H, Sprenger E. Hrsg. Taschenbuch für Heizung + Klimatechnik. Bd. 1 und 2, 80. Auflage 2021/2022. Bd 1. München: DIV Deutscher Industrieverlag GmbH; 2020: 108-118
  • 548 Hyvönen S, Poussa T. et al. High prevalence of neurological sequelae and multiple chemical sensitivity among occupants of a Finnish police station damaged by dampness microbiota. Arch Environ Occup Health 2021; 76: 145-151
  • 549 Lee TG. Health symptoms caused by molds in a courthouse. Arch Environ Health 2003; 58: 442-446
  • 550 Masri S, Miller CS. et al. Toxicant-induced loss of tolerance for chemicals, foods, and drugs: assessing patterns of exposure behind a global phenomenon. Environ Sci Eur 2021; 33: 65
  • 551 Suojalehto H, Ndika J. et al. Transcriptomic Profiling of Adult-Onset Asthma Related to Damp and Moldy Buildings and Idiopathic Environmental Intolerance. Int J Mol Sci 2021; 22: 10679
  • 552 Tuuminen T. Dampness and mold hypersensitivity syndrome, or mold-related illness, has become highly politicized and downplayed in Finland. Altern Ther Health Med 2021; 27: 59-64
  • 553 Vuokko A, Karvala K. et al. Environmental Intolerance, Symptoms and Disability Among Fertile-Aged Women. Int J Environ Res Public Health 2018; 15: 293
  • 554 Vuokko A, Karvala K. et al. Clinical Characteristics of Disability in Patients with Indoor Air-Related Environmental Intolerance. Saf Health Work 2019; 10: 362-369
  • 555 Yang Q, Wang J, Norbäck D. The home environment in a nationwide sample of multi-family buildings in Sweden: associations with ocular, nasal, throat and dermal symptoms, headache, and fatigue among adults. Indoor Air 2021; 31: 1402-1416
  • 556 Zhang X, Sahlberg B. et al. Dampness and moulds in workplace buildings: associations with incidence and remission of sick building syndrome (SBS) and biomarkers of inflammation in a 10 year follow-up study. Sci Total Environ 2012; 430: 75-81
  • 557 Valtonen V. Clinical Diagnosis of the Dampness and Mold Hypersensitivity Syndrome: Review of the Literature and Suggested Diagnostic Criteria. Front Immunol 2017; 8: 951
  • 558 Levy MB, Fink JN. Toxic mold syndrome. Adv Appl Microbiol 2004; 55: 275-288
  • 559 Hausteiner-Wiehle C, Bornschein S. et al. Multiple Chemical Sensitivity (MCS)/Idiopathic Environmental Intolerances (IEI). In: Wichmann HE, Fromme H. Hrsg. Handbuch der Umweltmedizin, Kap. V-13.3, 68. Erg.-Lfg. 12/2020. Landsberg/Lech: ecomed Medizin; 2020: 1-30
  • 560 Hausteiner-Wiehler C, Bornschein S. et al. Multiple Chemical Sensitivity (MCS)/Idiopathic Environmental Intolerances (IEI). In: Letzel S, Nowak D. Hrsg. Handbuch der Arbeitsmedizin, Kap. D I–13.1.2, 58. Erg.-Lfg. 12/2020. Landsberg/Lech: ecomed Medizin; 2020: 1-30
  • 561 Anyanwu E, Campbell AW. et al. The neurological significance of abnormal natural killer cell activity in chronic toxigenic mold exposures. ScientificWorldJournal 2003; 3: 1128-1137
  • 562 Gharibzadeh S, Hoseini SS. Is there any relation between moldy building exposure and chronic fatigue syndrome?. Med Hypotheses 2006; 66: 1243-1244
  • 563 Somppi TL. Non-Thyroidal Illness Syndrome in Patients Exposed to Indoor Air Dampness Microbiota Treated Successfully with Triiodothyronine. Front Immunol 2017; 8: 919
  • 564 Lahmann C, Dinkel A. Chronisches Erschöpfungssyndrom (CFS). In: Letzel S, Nowak D. Hrsg. Handbuch der Arbeitsmedizin. 26. Erg. Lfg. 9/12. Landsberg/Lech: ecomed Verlagsgesellschaft; 2012: 1-20
  • 565 Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, Board on the Health of Select Populations, Institute of Medicine. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: redefining an illness. Washington (DC): National Academies Press (US); 2015
  • 566 Kramer A, Wichelhaus TA. et al. Building-related illness (BRI) in all family members caused by mold infestation after dampness damage of the building. GMS Hyg Infect Control 2021; 16: Doc32
  • 567 Bullinger M. V-13 Befindlichkeitsstörungen. In: Wichmann H-E, Schlipköter H-W, Füllgraf G. Hrsg. Handbuch der Umweltmedizin. Landsberg/Lech: ecomed Verlagsgesellschaft; 1992: 1-12
  • 568 Bullinger M. 12.3 Befindlichkeitsstörungen. In: Dott W, Merk HF, Neuser J, Osieka R, Hrsg. Lehrbuch der Umweltmedizin. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH; 2002: 494-500
  • 569 Lucchini RG, Doman DC. et al. Neurological impacts from inhalation of pollutants and the nose-brain connection. Neurotoxicology 2012; 33: 838-841
  • 570 Metcalf JS, Tischbein M. et al. Cyanotoxins and the Nervous System. Toxins 2021; 13: 660
  • 571 Vilariño N, Louzao MC. et al. Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins (Basel) 2018; 10: 324
  • 572 Anyanwu E, Campbell AW, High W. Brainstem auditory evoked response in adolescents with acoustic mycotic neuroma due to environmental exposure to toxic molds. Int J Adolesc Med Health 2002; 14: 67-76
  • 573 Anyanwu EC, Campbell AW, Vojdani A. Neurophysiological effects of chronic indoor environmental toxic mold exposure on children. ScientificWorldJournal 2003; 3: 281-290
  • 574 Anyanwu E, Ehiri J, Akpan AI. Application, effectiveness, and limitations of the electrophysiological diagnosis of neurotoxic effects of chronic environmental mycotoxins in humans. Int J Adolesc Med Health 2004; 16: 107-118
  • 575 Baldo JV, Ahmad L, Ruff R. Neuropsychological performance of patients following mold exposure. Appl Neuropsychol 2002; 9: 193-202
  • 576 Crago BR, Gray MR. et al. Psychological, neuropsychological, and electrocortical effects of mixed mold exposure. Arch Environ Health 2003; 58: 452-463
  • 577 Gordon WA, Johanning E, Haddad L. Cognitive impairment associated with exposure to toxigenic fungi. In: Johanning E. ed. Bioaerosols, fungi and mycotoxins: health effects, assessment, prevention and control. New York: Eastern New York Occup Environ Health; 1999: 94-98
  • 578 Gordon WA, Cantor JB. et al. Cognitive impairment associated with toxigenic fungal exposure: a replication and extension of previous findings. Appl Neuropsych 2004; 11: 65-74
  • 579 Ratnaseelan AM, Tsilioni I, Theoharides TC. Effects of Mycotoxins on Neuropsychiatric Symptoms and Immune Processes. Clin Ther 2018; 40: 903-917
  • 580 Singer R. Chronic neurotoxicity from chronic mold exposure. 50th Annual Meeting of the Society of Toxicology, Washington. 2011 http://neurotox.blogspot.de/2011/03/chronic-neurotoxicity-from-chronic-mold.html (Stand: 06.03.2023)
  • 581 Gordon WA, Cantor JB. et al. Cognitive impairment associated with toxigenic fungal exposure: a response to two critiques. Appl Neuropsychol 2006; 13: 251-257
  • 582 McCaffrey RJ, Yantz CL. “Cognitive impairment associated with toxigenic fungal exposure”: a critique and critical analysis. Appl Neuropsychol 2005; 12: 134-137
  • 583 Casas L, Tiesler C. et al. Indoor factors and behavioural problems in children: the GINIplus and LISAplus birth cohort studies. Int J Hyg Environ Health 2013; 216: 146-154
  • 584 Casas L, Torrent M. et al. Early life exposures to home dampness, pet ownership and farm animal contact and neuropsychological development in 4 year old children: a prospective birth cohort study. Int J Hyg Environ Health 2013; 216: 690-697
  • 585 Casas L, Karvonen AM. et al. Early life home microbiome and hyperactivity/inattention in school-age children. Sci Rep 2019; 9: 17355
  • 586 Tiesler CMT, Thiering E. et al. Exposure to visible mould or dampness at home and sleep problems in children: Results from the LISAplus study. Environ Res 2015; 137: 357-363
  • 587 Shenassa ED, Daskalakis C. et al. Dampness and mold in the home and depression: an examination of mold-related illness and perceived control of one's home as possible depression pathways. Am J Public Health 2007; 97: 1893-1899
  • 588 Gonzalez-Casanova I, Stein AD. et al. Prenatal exposure to environmental pollutants and child development trajectories through 7 years. Int J Hyg Environ Health 2018; 221: 616-622
  • 589 Jedrychowski W, Maugeri U. et al. Cognitive function of 6-year old children exposed to mold-contaminated homes in early postnatal period. Prospective birth cohort study in Poland. Physiol Behav 2011; 104: 989-995
  • 590 Loftus CT, Ni Y. et al. Exposure to ambient air pollution and early childhood behavior: A longitudinal cohort study. Environ Res 2020; 183: 109075
  • 591 Midouhas E, Kokosi T, Flouri E. Outdoor and indoor air quality and cognitive ability in young children. Environ Res 2018; 161: 321-328
  • 592 Midouhas E, Kokosi T, Flouri E. The quality of air outside and inside the home: associations with emotional and behavioural problem scores in early childhood. BMC Public Health 2019; 19: 406
  • 593 Nilsen FM, Ruiz JDC, Tulve NS. A Meta-Analysis of Stressors from the Total Environment Associated with Children's General Cognitive Ability. Int J Environ Res Public Health 2020; 17: 5451
  • 594 Bredesen DE. Inhalational Alzheimer's disease: an unrecognized – and treatable – epidemic. Aging (Albany NY) 2016; 8: 304-313
  • 595 Duringer J, Fombonne E, Craig M. No Association between Mycotoxin Exposure and Autism: A Pilot Case-Control Study in School-Aged Children. Toxins (Basel) 2016; 8: 224
  • 596 Lees-Haley PR. Toxic Mold and Mycotoxins in Neurotoxicity Cases: Stachybotrys, Fusarium, Trichoderma, Aspergillus, Penicillium, Cladosporium, Alternaria, Trichothecenes. Psychol Rep 2003; 93: 561-584
  • 597 Ammann HM. Inhalation Exposure and Toxic Effects of Mycotoxins. In: Li D-W. ed. Biology of Microfungi. Fungal Biology. Cham: Springer; 2016.
  • 598 Anyanwu E, Campbell AW. et al. Biochemical changes in the serum of patients with chronic toxigenic mold exposures: a risk factor for multiple renal dysfunctions. ScientificWorldJournal 2003; 3: 1058-1064
  • 599 Tuuminen T, Rinne K. Response: Commentary: Severe sequelae to mold-related illness as demonstrated in two Finnish cohorts. Front Immunol 2018; 9: 1220
  • 600 Heinzow HS, Heinzow BGJ. Commentary: Severe sequelae to mold-related illness as demonstrated in two Finnish cohorts. Front Immunol 2017; 8: 1694
  • 601 Quintero O, Allard L, Ho D. Invasive mold infection of the gastrointestinal tract: A case series of 22 immunocompromised patients from a single academic center. Med Mycol 2022; 60: myac007
  • 602 Dearborn DG, Yike I. et al. Overview of investigations into pulmonary hemorrhage among infants in Cleveland, Ohio. Environ Health Perspect 1999; 107 (Suppl. 03) 495-499
  • 603 Glinge C, Rossetti S. et al. Risk of Sudden Infant Death Syndrome Among Siblings of Children Who Died of Sudden Infant Death Syndrome in Denmark. JAMA Netw Open 2023; 6: e2252724-e2252724
  • 604 Litchfield I, Hwang B-F, Jaakkola J. The Role of Air Pollution as a Determinant of Sudden Infant Death Syndrome: A Systematic Review and Meta-analysis. Epidemiology 2011; 22: S165-S16
  • 605 Lindsay JA. Chronic sequelae of foodborne disease. Emerg Infect Dis 1997; 3: 443-452
  • 606 Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet 2016; 387: 2340-2348
  • 607 Smith L, Prendergast AJ. et al. The Potential Role of Mycotoxins as a Contributor to Stunting in the SHINE Trial. Clin Infect Dis 2015; 61 (Suppl. 07) S733-S737
  • 608 Wu F, Groopman JD, Pestka JJ. Public health impacts of food borne mycotoxins. Annu Rev Food Sci Technol 2014; 5: 351-372
  • 609 Dennis D, Robertson D. et al. Fungal exposure endocrinopathy in sinusitis with growth hormone deficiency: Dennis-Robertson syndrome. Toxicol Ind Health 2009; 25: 669-680
  • 610 Nordness ME, Zacharisen MC, Fink JN. Toxic and other non-IgE-mediated effects of fungal exposures. Curr Allergy Asthma Rep 2003; 3: 438-446
  • 611 Verordnung über Sicherheit und Gesundheitsschutz bei Tätigkeiten mit Biologischen Arbeitsstoffen (Biostoffverordnung – BioStoffV) 13. Juni 2022.
  • 612 Lindemann H, Tümmler B, Dockter G. Hrsg. Mukoviszidose – Zystische Fibrose. 4. erweiterte und aktualisierte Auflage. Stuttgart: Georg Thieme Verlag; 2004
  • 613 World Health Organization (WHO). WHO fungal priority pathogens list to guide research, development and public health action. Licence: CC BY-NC-SA 3.0 IGO. Genf: World Health Organization; 2022. https://www.who.int/publications/i/item/9789240060241 (Stand: 06.03.2023)
  • 614 Nagano Y, Millar BC. et al. Fungal infections in patients with cystic fibrosis. Rev Med Microbiol 2007; 18: 11-16
  • 615 Pricope D, Deneuville E. et al. [Indoor fungal exposure: What impact on clinical and biological status regarding Aspergillus during cystic fibrosis]. [Article in French]. J Mycol Med 2015; 25: 136-142
  • 616 Rocchi S, Richaud-Thiriez B. et al. Replies to "Is the home environment an important factor in the occurrence of fungal events in cystic fibrosis?". J Cyst Fibros 2016; 15: e17-18
  • 617 Chong WH, Saha BK, Ta CK. Clinical characteristics and outcomes of influenza-associated pulmonary aspergillosis among criticallyill patients: a systematic review and meta-analysis. J Hosp Infect 2022; 120: 98-109
  • 618 Jenks JD, Nam HH, Hoenigl M. Invasive aspergillosis in critically ill patients: Review of definitions and diagnostic approaches. Mycoses 2021; 64: 1002-1014
  • 619 Kluge S, Strauß R. et al. Aspergillosis: Emerging risk groups in critically illpatients. Med Mycol 2021; 60: myab064
  • 620 Kuo C-W, Wang S-Y. et al. Invasive pulmonary aspergillosis is associated with cytomegalovirus viremia in critically ill patients – A retrospective cohort study. J Microbiol Immunol Infect 2022; 55: 291-299
  • 621 Magira EE, Chemaly RF. et al. Corrigendum: Outcomes in Invasive Pulmonary Aspergillosis Infections Complicated by Respiratory Viral Infections in Patients With Hematologic Malignancies: A Case-Control Study. Open Forum Infect Dis 2019; 6: ofz458
  • 622 Piñana JL, Gómez MD. et al. Incidence, risk factors, and outcome of pulmonary invasive fungal disease after respiratory virus infection in allogeneic hematopoietic stem cell transplantation recipients. Transpl Infect Dis 2019; 21: e13158
  • 623 Gabrio T, Weidner U. Vorkommen und gesundheitliche/allergologische Relevanz von Schimmelpilzen aus Sicht der Umweltmedizin. Allergologie 2010; 33: 101-108
  • 624 Zöllner IK, Weiland SK. et al. No increase in the prevalence of asthma, allergies, and atopic sensitization among children in Germany: 1992–2001. Thorax 2005; 60: 545-548
  • 625 Immonen J, Meklin T. et al. Skin-prick test findings in students from moisture- and mould-damaged schools: a 3-year follow-up study. Pediatr Allergy Immunol 2001; 12: 87-94
  • 626 Taskinen T, Meklin T. et al. Moisture and mould problems in schools and respiratory manifestations in schoolchildren: clinical and skin test findings. Acta Paediatr 1997; 86: 1181-1187
  • 627 Taskinen T, Hyvärinen A. et al. Asthma and respiratory infections in school children with special reference to moisture and mold problems in the school. Acta Paediatr 1999; 88: 1373-1379
  • 628 Forkel S, Beutner C. et al. Sensitization against Fungi in Patients with Airway Allergies over 20 Years in Germany. Int Arch Allergy Immunol 2021; 182: 515-523
  • 629 Kespohl S, Raulf M. Mould allergens: Where do we stand with molecular allergy diagnostics? Part 13 of the series Molecular Allergology. Allergo J Int 2014; 23: 120-125
  • 630 Kespohl S, Raulf M. Mold sensitization in asthmatic and non-asthmatic subjects diagnosed with extract-based versus component-based allergens. Adv Exp Med Biol 2019; 1153: 79-89
  • 631 Park JH, Kreiss K, Cox-Ganser JM. Rhinosinusitis and mold as risk factors for asthma symptoms in occupants of a water-damaged building. Indoor Air 2012; 22: 396-404
  • 632 Gross R. 1. Die Anamnese in der Sicht des Klinikers. In: Heite HJ. Hrsg. Anamnese. Methoden der Erfassung und Auswertung anamnestischer Daten, Interviewtechnik, Fragebogenkonstruktion, Mensch-Maschinen-Dialog. Stuttgart, New York: Schattauer Verlag; 1971: 17-28
  • 633 Siles RI, Hsieh FH. Allergy blood testing: A practical guide for clinicians. Cleve Clin J Med 2011; 78: 585-592
  • 634 Skevaki CL, Renz H. In-vitro-Allergiediagnostik. 2014; Allergologie 37: 403-411
  • 635 Barnes RA, Rogers TR. Control of an outbreak of nosocomial aspergillosis by laminar air-flow isolation. J Hosp Infect 1989; 14: 89-94
  • 636 Burwen DR, Lasker BA. et al. Invasive aspergillosis outbreak on a hematology-oncology ward. Infect Control Hosp Epidemiol 2001; 22: 45-48
  • 637 Engelhart S, Exner M. Neue KRINKO-Richtlinie zu immunsupprimierten Patienten. In: Wiesmüller GA, Heinzow B, Herr CEW. Hrsg. Gesundheitsrisiko Schimmelpilze im Innenraum. Heidelberg, München, Landsberg, Frechen, Hamburg: ecomed Medizin; 2013: 81-91
  • 638 Iwen PC, Davis JC. et al. Airborne fungal spore monitoring in a protective environment during hospital construction, and correlation with an outbreak of invasive aspergillosis. Infect Control Hosp Epidemiol 1994; 15: 303-306
  • 639 Loo VG, Bertrand C. et al. Control of construction-associated nosocomial aspergillosis in an antiquated hematology unit. Infect Control Hosp Epidemiol 1996; 17: 360-364
  • 640 Thio CL, Smith D. et al. Refinements of environmental assessment during an outbreak investigation of invasive aspergillosis in a leukemia and bone marrow transplant unit. Infect Control Hosp Epidemiol 2000; 21: 18-23
  • 641 Petnak T, Moua T. Exposure assessment in hypersensitivity pneumonitis: a comprehensive review and proposed screening questionnaire. ERJ Open Res 2020; 6: 00230-2020
  • 642 Kespohl S, Liebers V. et al. What should be tested in patients with suspected mold exposure? Usefulness of serological markers for the diagnosis. Allergol Select 2022; 6: 118-132
  • 643 Liebers V, Kespohl S. et al. Is in vitro cytokine release a suitable marker to improve the diagnosis of suspected mold-related respiratory symptoms? A proof-of concept study. Allergol Select 2022; 6: 133-141
  • 644 Döring G. Lungeninfektionen bei Mukoviszidose: Therapie und Prävention. Köln: Dtsch Ärzteverlag; 2002
  • 645 TRBA/TRGS 406. Sensibilisierende Stoffe für die Atemwege. 2008. https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRGS/TRGS-TRBA-406.html (Stand: 06.03.2023)
  • 646 Loidolt D, Gailhofer G. et al. Interdisziplinäre Betrachtung zum Thema "Pilzsporenallergie". Allergologie 1989; 12: 427-431
  • 647 Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Preventing occupational respiratory disease from exposures caused by dampness in office buildings, schools, and other nonindustrial buildings. DHHS (NIOSH) Publication No. 2013-102. 2012 http://www.cdc.gov/niosh/docs/2013-102/pdfs/2013-102.pdf (Stand: 06.03.2023)
  • 648 Eduard W. Fungal spores: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit Rev Toxicol 2009; 39: 799-864
  • 649 Knobbe G. Gesundheitsgefährdung durch Schimmelpilze am Arbeitsplatz – Erkennung und Vorsorge. Tagung: Schimmel. Gefahr für Mensch und Kulturgut durch Mikroorganismen. München: Mutec. 2001
  • 650 Boonen J, Malysheva SV. et al. Human skin penetration of selected model mycotoxins. Toxicology 2012; 301: 21-32
  • 651 Gabrio T, Hurraß J. et al. Untersuchungsmethoden zur Erfassung einer Schimmelpilzexposition – ein Update. Umweltmed – Hygiene – Arbeitsmed 2015; 20: 115-131
  • 652 Steiß JO. Asthma bronchiale und Schimmelpilzbelastung im Kindes- und Jugendalter. In: Wiesmüller GA, Heinzow B, Herr CEW. Hrsg. Gesundheitsrisiko Schimmelpilze im Innenraum. Heidelberg, München, Landsberg, Frechen, Hamburg: ecomed Medizin; 2013: 146-155
  • 653 Raulf M. Diagnostik der Allergien vom Soforttyp – „State of the Art“. Akt Dermatol 2009; 35: 385-392
  • 654 van Kampen V, Rabstein S. et al. Prediction of challenge test results by flour-specific IgE and skin prick test in symptomatic bakers. Allergy 2008; 63: 897-902
  • 655 Klimek L, Hoffmann HJ V. et al. In-vivo diagnostic test allergens in Europe: A call to action and proposal for recovery plan-An EAACI position paper. Allergy 2020; 75: 2161-2169
  • 656 Kespohl S, Maryska S. et al. How to diagnose mould allergy? Comparison of skin prick tests with specific IgE results. Clin Exp Allergy 2016; 46: 981-991
  • 657 Sánchez P, Vélez-Del Burog A. et al. Fungal Allergen and Mold Allergy Diagnosis: Role and Relevance of Alternaria alternata Alt a 1 Protein Family. J Fungi (Basel) 2022; 8: 277
  • 658 Matricardi PM, Kleine-Tebbe J. et al. EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 (Suppl. 23) 1-250
  • 659 Kespohl S, Raulf M. Allergy to moulds. In: Hoffmann-Sommergruber K, de las Vecillas L, Dramburg S, Hilger C, Matricardi P, Santos A. eds. Molecular Allergology User’s Guide 2.0, Chapter B07. Zürich: European Academy of Allergy and Clinical Immunology; 2022
  • 660 Kleine-Tebbe J. A03 Molecular Allergy Diagnostics in Clinical Practice. In: EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 (Suppl. 23) 1-250
  • 661 Crameri R. Recombinant Aspergillus fumigatus allergens: from the nucleotide sequences to clinical applications. Int Arch Allergy Immunol 1998; 115: 99-114
  • 662 Muthu V, Sehgal IS. et al. Utility of recombinant Aspergillus fumigatus antigens in the diagnosis of allergic bronchopulmonary aspergillosis: A systematic review and diagnostic test accuracy meta-analysis. Clin Exp Allergy 2018; 48: 1107-1136
  • 663 Kleine-Tebbe J. Supposed food allergy: unreasonable allergy test. MMW Fortschr Med 2009; 151: 6-7
  • 664 Raulf M, Joest M. et al. Update of reference values for IgG antibodies against typical antigens of hypersensitivity pneumonitis. Data of a German multicentre study. Allergo J Int 2019; 28: 192-203
  • 665 Mayo Clinic, Mayo Medical Laboratories. Test ID: ASPAG – Aspergillus (Galactomannan) Antigen, Serum. 2015 http://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/84356 (Stand: 06.03.2023)
  • 666 Verdaguer V, Walsh TJ. et al. Galactomannan antigen detection in the diagnosis of invasive aspergillosis. Expert Rev Mol Diagn 2007; 7: 21-32
  • 667 Fontana C, Gaziano R. et al. (1-3)-β-D-Glucan vs Galactomannan Antigen in Diagnosing Invasive Fungal Infections (IFIs). Open Microbiol J 2012; 6: 70-73
  • 668 van Emon JM, Reed AW. et al. ELISA measurement of stachylysin in serum to quantify human exposures to the indoor mold Stachybotrys chartarum. J Occup Environ Med 2003; 45: 582-591
  • 669 Brasel TL, Campbell AW. et al. Detection of trichothecene mycotoxins in sera from individuals exposed to Stachybotrys chartarum in indoor environments. Arch Environ Health 2004; 59: 317-323
  • 670 Hooper DG, Bolton VE. et al. Mycotoxin detection in human samples from patients exposed to environmental molds. Int J Mol Sci 2009; 10: 1465-1475
  • 671 Straus DC. Molds, mycotoxins, and sick building syndrome. Toxicol Ind Health 2009; 25 (09) 617-635
  • 672 Renz H, Biedermann T. et al. In-vitro-Allergiediagnostik. Allergo J 2010; 19: 110-128
  • 673 Eberlein B, Santos AF. et al. Basophil activation testing in diagnosis and monitoring of allergic disease-an overview. Allergo J Int 2016; 25: 106-113
  • 674 Wouters IM, Douwes J. et al. Inter- and intraindividual variation of endotoxin- and beta(1 –> 3)-glucan-induced cytokine responses in a whole blood assay. Toxicol Ind Health 2002; 18: 15-27
  • 675 Bartemes KR, Kita H. Innate and adaptive immune responses to fungi in the airway. J Allergy Clin Immunol 2018; 142: 353-363
  • 676 Duffy D, Rouilly V. et al. Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. Immunity 2014; 40: 436-450
  • 677 Liebers V, Kendzia B. et al. Cell Activation and Cytokine Release Ex Vivo: Estimation of Reproducibility of the Whole-Blood Assay with Fresh Human Blood. Adv Exp Med Biol 2018; 1108: 25-36
  • 678 Punsmann S, Liebers V. et al. Ex vivo cytokine release and pattern recognition receptor expression of subjects exposed to dampness: pilot study to assess the outcome of mould exposure to the innate immune system. PLoS One 2013; 8: e82734
  • 679 Gonsior E, Henzgen M. et al. Guidelines for conducting provocation tests with allergens. German Society of Allergology and Clinical Immunology and German Society for Immunology. Pneumologie 2002; 56: 187-198
  • 680 O'Driscoll BR, Powell G. et al. Comparison of skin prick tests with specific serum immunoglobulin E in the diagnosis of fungal sensitization in patients with severe asthma. Clin Exp Allergy 2009; 39: 1677-1683
  • 681 Kespohl S, Maryska S. et al. Schimmelpilzallergie: Sensibilisierungshäufigkeit und Konkordanz verschiedener Hautprickteste im Vergleich zur spezifischen IgE-Bestimmung. Pneumologie 2015; 69: S5 V515
  • 682 Rueff F, Bergmann K-C. et al. Hauttests zur Diagnostik von allergischen Soforttyp-Reaktionen. Allergo J 2010; 19: 402-415
  • 683 Lichtnecker H. Rationelle Diagnostik und zielführende Therapie bei Schimmelpilzallergien. In: Wiesmüller GA, Heinzow B, Herr CEW. Hrsg. Gesundheitsrisiko Schimmelpilze im Innenraum. Heidelberg, München, Landsberg, Frechen, Hamburg: ecomed Medizin; 2013: 124-139
  • 684 Kespohl S, Maryska S. et al. Biochemical and immunological analysis of mould skin prick test solution: current status of standardization. Clin Exp Allergy 2013; 43: 1286-1296
  • 685 Saloga J, Klimek L. et al. Allergologie-Handbuch: Grundlagen und klinische Praxis, 2. überarb. u. erweiterte Aufl. Stuttgart: Schattauer Verlag; 2011
  • 686 Albegger K. Diagnosis of allergic rhinitis. I. Anamnesis – ENT medical examination – skin tests – intranasal provocation. HNO 1991; 39: 77-81
  • 687 Bachert C. Reproducibility of the intranasal provocation test. Laryngol Rhinol Otol (Stuttg) 1987; 66: 157-160
  • 688 Gosepath J, Amedee RG, Mann WJ. Nasal provocation testing as an international standard for evaluation of allergic and nonallergic rhinitis. Laryngoscope 2005; 115: 512-516
  • 689 Augé J, Vent J. et al. EAACI Position paper on the standardization of nasal allergen challenges. Allergy 2018; 73: 1597-1608
  • 690 Gronemeyer U. Der konjunktivale Provokationstest. In: Schulze-Werninghaus G, Fuchs T, Bachert C. Hrsg. Manuale allergologicum. München, Orlando: Dustri Verlag; 2004
  • 691 Karvala K, Toskala E. et al. New-onset adult asthma in relation to damp and moldy workplaces. Int Arch Occup Environ Health 2010; 83: 855-865
  • 692 van Strien RT, Koopman LP. et al. Mite and pet allergen levels in homes of children born to allergic and nonallergic parents: the PIAMA study. Environ Health Perspect 2002; 110: A693-A698
  • 693 Heinrich J, Hölscher B. et al. Reproducibility of allergen, endotoxin and fungi measurements in the indoor environment. J Expo Anal Environ Epidemiol 2003; 13: 152-160
  • 694 Hirst JM. An automatic volumetric spore trap. Ann Appl Biol 1952; 39: 257-265
  • 695 VDI 4252 Blatt 4: Bioaerosole und biologische Agenzien – Ermittlung von Pollen und Sporen in der Außenluft unter Verwendung einer volumetrischen Methode für ein Messnetz zu allergologischen Zwecken (VDI 4252 Blatt 4:2019-03). Berlin: Beuth Verlag GmbH; 2019
  • 696 Norbäck D, Hashim JH. et al. Ocular symptoms and tear film break up time (BUT) among junior high school students in Penang, Malaysia – Associations with fungal DNA in school dust. Int J Hyg Environ Health 2017; 220: 697-703
  • 697 Hernberg S, Sripaiboonkij P. et al. Indoor molds and lung function in healthy adults. Respir Med 2014; 108: 677-684
  • 698 Norbäck D, Zock JP. et al. Lung function decline in relation to mould and dampness in the home: the longitudinal European Community Respiratory Health Survey ECRHS II. Thorax 2011; 66: 396-401
  • 699 Casas L, Tischer C. et al. Early life microbial exposure and fractional exhaled nitric oxide in school-age children: a prospective birth cohort study. Environ Health 2013; 12: 103
  • 700 Mustonen K, Karvonen AM. et al. Moisture damage in home associates with systemic inflammation in children. Indoor Air 2016; 26: 439-447
  • 701 Norbäck D, Hashim JH. et al. Respiratory symptoms and fractional exhaled nitric oxide (FeNO) among students in Penang, Malaysia in relation to signs of dampness at school and fungal DNA in school dust. Sci Total Environ 2017; 577: 148-154
  • 702 Centers for Disease Control and Prevention (CDC). Case Definition: Trichothecene Mycotoxin. Page last reviewed: April 4, 2018. https://emergency.cdc.gov/agent/trichothecene/casedef.asp (Stand: 06.03.2023)
  • 703 Fan K, Xu J. et al. Determination of multiple mycotoxins in paired plasma and urine samples to assess human exposure in Nanjing, China. Environ Pollut 2019; 248: 865-873
  • 704 Franco LT, Khaneghah AM. et al. Biomonitoring of mycotoxin exposure using urinary biomarker approaches: a review. Toxin Reviews 2021; 40: 383-403
  • 705 Heyndrickx E, Sioen I. et al. Human biomonitoring of multiple mycotoxins in the Belgian population: Results of the BIOMYCO study. Environ Int 2015; 84: 82-99
  • 706 Pallarés N, Carballo D. et al. High-Throughput Determination of Major Mycotoxins with Human Health Concerns in Urine by LC-Q TOF MS and Its Application to an Exposure Study. Toxins (Basel) 2022; 14: 42
  • 707 Tittlemier SA, Cramer B. et al. Developments in mycotoxin analysis: an update for 2020-2021. World Mycotoxin J 2022; 15: 3-25
  • 708 Föllmann W, Ali N. et al. Biomonitoring of mycotoxins in urine: pilot study in mill workers. J Toxicol Environ Health A 2016; 79: 1015-1025
  • 709 Franco LT, Ismail A. et al. Occurrence of toxigenic fungi and mycotoxins in workplaces and human biomonitoring of mycotoxins in exposed workers: a systematic review. Toxin Reviews 2021; 40: 576-591
  • 710 Habschied K, Kanižai Šarić G. et al. Mycotoxins-Biomonitoring and Human Exposure. Toxins (Basel) 2021; 13: 113
  • 711 van den Brand AD, Bajard L. et al. Providing Biological Plausibility for Exposure – Health Relationships for the Mycotoxins Deoxynivalenol (DON) and Fumonisin B1 (FB1) in Humans Using the AOP Framework. Toxins 2022; 14: 279
  • 712 Neuhann HF, Wiesmüller GA Hornberg C, Schlipköter HW. III-2.4 Aufgaben und Strukturen umweltmedizinischer Beratungsstellen in Deutschland. In: Wichmann H-E, Schlipköter H-W, Fülgraff G. Hrsg. Handbuch der Umweltmedizin, 25. Erg. Lfg. 9/02. Landsberg/Lech: ecomed Verlagsgesellschaft; 2002: 1-23
  • 713 Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“. Einsatz immunologischer Untersuchungsverfahren in der Umweltmedizin. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 2002; 45: 740-744
  • 714 Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“. Diagnostische Relevanz des Lymphozytentransformationstests in der Umweltmedizin. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 2002; 45: 745-749
  • 715 Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“. Bedeutung von Zytokinbestimmungen in der umweltmedizinischen Praxis. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 2004; 47: 73-79
  • 716 Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“. Bedeutung der Bestimmung von Lymphozyten-Subpopulationen in der Umweltmedizin. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 2006; 49: 468-484
  • 717 Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“. Oxidativer Stress und Möglichkeiten seiner Messung aus umweltmedizinischer Sicht. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 2008; 51: 1464-1482
  • 718 Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“. Leitlinien Diagnostische Validität. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 2008; 51: 1353-1356
  • 719 Oepen I. Unkonventionelle diagnostische und therapeutische Methoden in der Umweltmedizin. Gesundheitswesen 1998; 60: 420-430
  • 720 Agnihotri NT, Greenberger PA. Unproved and controversial methods and theories in allergy/immunology. Allergy Asthma Proc 2019; 40: 490-493
  • 721 Burkhard B. Unkonventionelle Konzepte in der Umweltmedizin. Versicherungsmedizin 1996; 48: 179-184
  • 722 Greiner A, Drexler H. Unnötige Diagnostik in der Umweltmedizin. Eine retrospektive Kohortenstudie. Dtsch Ärztebl Int 2016; 113: 773-780
  • 723 Hudnell HK, Shoemaker RC. Visual Contrast Sensitivity: Response. Environ Health Perspect 2002; 110: A121-A123
  • 724 Pateras E, Karioti M. Contrast Sensitivity Studies and Test – A Review. Int J Ophthalmol Clin Res 2020; 7: 116
  • 725 Swinker M, Burke WA. Correspondence – Visual Contrast Sensitivity as a Diagnostic Tool. Environ Health Perspect 2002; 110: A120-A121
  • 726 Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF). NVL-Programm. S3-Leitlinie Nationale VersorgungsLeitlinie Asthma, Registernummer nvl-002. Stand: 07.09.2020, Gültig bis: 06.09.2025. https://register.awmf.org/de/leitlinien/detail/nvl-002 (Stand: 06.03.2023)
  • 727 Klimek L, Bachert C. et al. ARIA-Leitlinie 2019: Behandlung der allergischen Rhinitis im deutschen Gesundheitssystem. Allergo J 2019; 28: 20-46
  • 728 Pfaar O, Ankermann T. et al. Guideline on allergen immunotherapy in IgE-mediated allergic diseases: S2K Guideline of the German Society of Allergology and Clinical Immunology (DGAKI), Society of Pediatric Allergology and Environmental Medicine (GPA), Medical Association of German Allergologists (AeDA), Austrian Society of Allergology and Immunology (ÖGAI), Swiss Society for Allergology and Immunology (SSAI), German Dermatological Society (DDG), German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO-KHC), German Society of Pediatrics and Adolescent Medicine (DGKJ), Society of Pediatric Pulmonology (GPP), German Respiratory Society (DGP), German Professional Association of Otolaryngologists (BVHNO), German Association of Paediatric and Adolescent Care Specialists (BVKJ), Federal Association of Pneumologists, Sleep and Respiratory Physicians (BdP), Professional Association of German Dermatologists (BVDD). Allergol Select 2022; 6: 167-232
  • 729 Alvaro-Lozano M, Akdis CA. et al. EAACI Allergen Immunotherapy User's Guide. Pediatr Allergy Immunol 2020; 31 (Suppl. 25) 1-101
  • 730 Dreborg S, Agrell B. et al. A double-blind, multicenter immunotherapy trial in children, using a purified and standardized Cladosporium herbarum preparation. I. Clinical results. Allergy 1986; 41: 131-140
  • 731 Horst M, Hejjaoui A. et al. Double-blind, placebo-controlled rush immunotherapy with a standardized Alternaria extract. J Allergy Clin Immunol 1990; 85: 460-472
  • 732 Kuna P, Kaczmarek J, Kupczyk M. Efficacy and safety of immunotherapy for allergies to Alternaria alternata in children. J Allergy Clin Immunol 2011; 127: 502-508.e1-6
  • 733 Tabar AI, Prieto L. et al. Double-blind, randomized, placebo-controlled trial of allergen-specific immunotherapy with the major allergen Alt a 1. J Allergy Clin Immunol 2019; 144: 216-223.e3
  • 734 Bozek A, Pyrkosz K. Immunotherapy of mold allergy: A review. Hum Vaccin Immunother 2017; 13: 2397-2401
  • 735 Twaroch TE, Curin M. et al. Mold allergens in respiratory allergy: from structure to therapy. Allergy Asthma Immunol Res 2015; 7: 205-20
  • 736 Eis D. Clinical ecology – an unproved approach in the context of environmental medicine. Zbl Hyg Umweltmed 1999; 202: 291-330
  • 737 Lange L, Kopp M. Komplementäre Diagnose- und Therapieverfahren in der Kinderallergologie. In: Kinderallergologie in Klinik und Praxis. Berlin, Heidelberg: Springer; 2014.
  • 738 Wasik AA, Tuuminen T. Salt Therapy as a Complementary Method for the Treatment of Respiratory Tract Diseases, With a Focus on Mold-Related Illness. Altern Ther Health Med 2021; 27 (Suppl. 01) 223-239
  • 739 Sauni R, Uitti J. et al. Remediating buildings damaged by dampness and mould for preventing or reducing respiratory tract symptoms, infections and asthma. Cochrane Database Syst Rev 2011; 7: CD007897
  • 740 Burr ML, Matthews IP. et al. Effects on patients with asthma of eradicating visible indoor mould: a randomised controlled trial. Thorax 2007; 62: 767-772
  • 741 Heinrich J. Influence of indoor factors in dwellings on the development of childhood asthma. Int J Hyg Environ Health 2011; 214: 1-25
  • 742 Kalayci O, Miligkos M. et al. The role of environmental allergen control in the management of asthma. World Allergy Organ J 2022; 15: 100634
  • 743 Krieger J, Jacobs DE. et al. Housing interventions and control of asthma-related indoor biologic agents: a review of the evidence. J Public Health Manag Pract 2010; 16 (05) S11-S20
  • 744 Schmidt S. Sinnvolle Wohnraumsanierungsempfehlungen bei Hausstaubmilben-, Tier- und Schimmelpilzallergien (Teil 1). Stellungnahme der Dokumentations- und Informationsstelle für Allergiefragen im Kindes- und Jugendalter (DISA). Allergo J 1998; 7: 156-163 https://www.g-n-n.de/solva_udocs/Wohnraumsanierung_1.pdf (Stand: 06.03.2023)
  • 745 Schmidt S. Sinnvolle Wohnraumsanierungsempfehlungen bei Hausstaubmilben-, Tier- und Schimmelpilzallergien (Teil 2 +3). Stellungnahme der Dokumentations- und Informationsstelle für Allergiefragen im Kindes- und Jugendalter (DISA). Allergo J 1998; 7: 217-202 https://www.g-n-n.de/solva_udocs/Wohnraumsanierung_2.pdf (Stand: 06.03.2023)
  • 746 Albertsmeyer M, zur Nieden A. et al. Häusliches Hygieneverhalten von Mukoviszidosepatienten: Status – standardisierte Schulung – Hygienescore – Evaluation. Umweltmed – Hygiene – Arbeitsmed 2013; 18: 65-80
  • 747 Bernstein JA, Levin L. et al. A pilot study to investigate the effects of combined dehumidification and HEPA filtration on dew point and airborne mold spore counts in day care centers. Indoor Air 2005; 15: 402-407
  • 748 Wood RA. Air filtration devices in the control of indoor allergens. Curr Allergy Asthma Rep 2002; 2: 397-400
  • 749 McDonald E, Cook D. et al. Effect of air filtration systems on asthma: a systematic review of randomized trials. Chest 2002; 122: 1535-1542
  • 750 Sublett JL, Seltzer J. et al. Air filters and air cleaners: rostrum by the American Academy of Allergy, Asthma & Immunology Indoor Allergen Committee. J Allergy Clin Immunol 2010; 125: 32-38
  • 751 Deutsche Gesellschaft für Kinder- und Jugendmedizin e.V. (DGKJ), Deutsche Gesellschaft für Pädiatrische Infektiologie e.V. (DGPI), Deutsche Gesellschaft für Epidemiologie e.V. (DGEpi). S3-Leitlinie Maßnahmen zur Prävention und Kontrolle der SARS-CoV-2-Übertragung in Schulen – Lebende Leitlinie (Living Guideline). Registernummer 027 – 076. 2022. https://register.awmf.org/de/leitlinien/detail/027-076 (Stand: 06.03.2023)
  • 752 Hubbard HF, Coleman BK. et al. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings. Indoor Air 2005; 15: 432-444
  • 753 Waring MS, Siegel JA. The effect of an ion generator on indoor air quality in a residential room. Indoor Air 2011; 21: 267-276
  • 754 Brasche S, Bischof W. Vorkommen, Ursachen und gesundheitliche Aspekte von Feuchteschäden in Wohnungen – Auswertung zu Schimmelpilzschäden in nach Wärmeschutzverordnung von 1995 erbauten Gebäuden. Universitätsklinikum Jena, Institut für Arbeits-, Sozial- und Umweltmedizin, Arbeitsgruppe Raumklimatologie; 2007
  • 755 Landesfachverband Schreinerhandwerk Baden-Württemberg. Schimmelpilze hinter Möbeln – Eine Praxishilfe zur Vermeidung. https://docplayer.org/36911011-Schimmelpilze-hinter-moebeln-eine-praxishilfe-zur-vermeidung.html (Stand: 06.03.2023)
  • 756 Oswald R, Liebert G, Spilker R. Schimmelpilzbefall bei hochwärmegedämmten Neu- und Altbauten. Erhebung von Schadensfällen – Ursachen und Konsequenzen. Bauforschung für die Praxis, Band 84. Stuttgart: Fraunhofer IRB Verlag; 2008
  • 757 Umweltbundesamt. Kinder-Umwelt-Survey (KUS) 2003/06. Sensibilisierungen gegenüber Innenraumschimmelpilzen. Berlin: Umweltbundesamt; 2011. https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/4176.pdf (Stand: 06.03.2023)
  • 758 Netzwerk Schimmelpilzberatung Baden-Württemberg. Feuchte-/Schimmelpilzschäden vermeiden und beheben. 2022
  • 759 Weber A, Fuchs N. et al. Exploring the associations between parent-reported biological indoor environment and airway-related symptoms and allergic diseases in children. Int J Hyg Environ Health 2017; 220: 1333-1339
  • 760 Rolke M, Engelhart S. et al. Exogen-allergische Alveolitis von einem Dampfbügeleisen. Allergologie 2003; 26: 327-328
  • 761 Diette GB, McCormack MC. et al. Environmental issues in managing asthma. Respir Care 2008; 53: 602-615
  • 762 Fischer PJ. Elternratgeber – Atemwegsallergien durch Schimmelpilze. Überarbeitet 04/2021. Pädiatr Allergologie 2021; 2: 53-55 https://www.gpau.de/fileadmin/user_upload/GPA/dateien_indiziert/Elternratgeber/ER_Atemwegsallergien_Schimmelpilze.pdf (Stand: 06.03.2023)
  • 763 Grinn-Gofroń A, Bosiacka B. et al. A comparative study of hourly and daily relationships between selected meteorological parameters and airborne fungal spore composition. Aerobiologia (Bologna) 2018; 34: 45-54
  • 764 Werchan B, Werchan M. et al. Die Wochenpollenvorhersage der Stiftung Deutscher Polleninformationsdienst (PID) – ein Hilfsmittel für Pollenallergiker und deren behandelnde Ärzte in Deutschland. Allergologie 2021; 44: 920-926
  • 765 Apangu GP, Adams-Groom B. et al. Sentinel-2 satellite and HYSPLIT model suggest that local cereal harvesting substantially contribute to peak Alternaria spore concentrations. Agric Forest Meteorol 2022; 326: 109156
  • 766 Olsen Y, Gosewinkel UB. et al. Regional variation in airborne Alternaria spore concentrations in Denmark through 2012–2015 seasons: the influence of meteorology and grain harvesting. Aerobiologia 2019; 35: 533-551
  • 767 Umweltbundesamt. Häufige Fragen bei Schimmelbefall. https://www.umweltbundesamt.de/themen/gesundheit/umwelteinfluesse-auf-den-menschen/schimmel/haeufige-fragen-bei-schimmelbefall (Stand: 06.03.2023)
  • 768 Verbraucherzentrale, Hrsg. Feuchtigkeit und Schimmelbildung – Erkennen, beseitigen, vorbeugen. Verfasser: Donadio S, Gabrio T, Kussauer K, Lerch P, Wiesmüller GA. 2. Auflage 2023. Kapitel: Woran erkenne ich eine qualifizierte Firma für die Schimmelsanierung. ISBN: 9783863360603 149-150
  • 769 Deitschun F, Warscheid T. Richtlinie zum sachgerechten Umgang mit Schimmelpilzschäden in Gebäuden – Eine Empfehlung des BVS – Erkennen, Bewerten und Instandsetzen. Der Sachverständige 2010; 37: 345-357 sowie Der Sachverständige 2012; 39: 98–113
  • 770 Deitschun F, Warscheid T. Richtlinie zum sachgerechten Umgang mit Schimmelpilzschäden in Gebäuden – Eine Empfehlung des BVS – Erkennen, Bewerten und Instandsetzen 2014. https://www.bvs-ev.de/fileupload/files/617731b9d5740_Schimmelpilzrichtlinie.pdf (Stand: 06.03.2023)
  • 771 WTA-Merkblatt 6-15 Ausgabe: 08.2013/D. Technische Trocknung durchfeuchteter Bauteile Teil 1: Grundlagen 2013. https://www.beuth.de/de/technische-regel/wta-merkblatt-6-15/200010841 (Stand: 06.03.2023)
  • 772 WTA-Merkblatt 6-16 Ausgabe: 01.2019/D. Technische Trocknung durchfeuchteter Bauteile Teil 2: Planung, Ausführung und Kontrolle 2019. https://www.beuth.de/de/technische-regel/wta-merkblatt-6-16/305869554 (Stand: 06.03.2023)
  • 773 WTA-Merkblatt 4-12-21/D:2021-05. Ziele und Kontrolle von Schimmelpilzschadensanierungen in Innenräumen 2021. https://www.beuth.de/de/technische-regel/wta-merkblatt-4-12/342998074 (Stand: 06.03.2023)
  • 774 Lampert T, Müters S. et al. Messung des sozioökonomischen Status in der KiGGS-Studie. Erste Folgebefragung (KiGGS Welle 1). Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 2014; 57: 762-770
  • 775 Gabrio T, Valtanen K, Herr C. Schimmel im Innenraum – gesundheitliche Symptome und Zusammenhänge mit Armutsgefährdung. Umweltmed – Hygiene – Arbeitsmed 2021; 26: 245-265
  • 776 Bundeszentrale für politische Bildung. Ausgewählte Armutsgefährdungsquoten. 2020 https://www.bpb.de/nachschlagen/zahlen-und-fakten/soziale-situation-in-deutschland/61785/armutsgefaehrdung (Stand: 06.03.2023)
  • 777 Bundeszentrale für politische Bildung. Soziale Lagen in Deutschland. 2021 https://www.bpb.de/kurz-knapp/zahlen-und-fakten/datenreport-2021/sozialstruktur-und-soziale-lagen/330013/soziale-lagen-in-deutschland (Stand: 06.03.2023)
  • 778 statista. Bruttoinlandsprodukt (BIP) je Einwohner nach Bundesländern im Jahr 2021. https://de.statista.com/statistik/daten/studie/73061/umfrage/bundeslaender-im-vergleich-bruttoinlandsprodukt/ (Stand: 06.03.2023)
  • 779 Statistisches Bundesamt (destatis). Verbraucherpreisindizes für Deutschland – Jahresbericht 2021. https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Verbraucherpreisindex/Publikationen/_publikationen-verbraucherpreisindex.html;jsessionid=16CA58D32352426707F2514FD8C613A5.live732?nn=214056#_f639b3ked (Stand: 06.03.2023)
  • 780 Statistisches Bundesamt (destatis). Wohnen. Belastungen durch Wohnumfeld und Unterkunft, 2021. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Wohnen/Tabellen/belastung-wohnsituation-silc.html (Stand: 06.03.2023)
  • 781 Brasche S, Heinz E. et al. Vorkommen, Ursachen und gesundheitliche Aspekte von Feuchteschäden in Wohnungen – Ergebnisse einer repräsentativen Wohnungsstudie in Deutschland. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 2003; 46: 683-693
  • 782 Landesgesundheitsamt Baden-Württemberg. Monitoring Gesundheit und Umwelt – Untersuchung Schimmelpilze, Wohnen und Gesundheit 2014/15. Tabellenband. Stuttgart: Landesgesundheitsamt Baden-Württemberg; 2017
  • 783 Thißen M, Niemann H. Wohnen und Umwelt – Ergebnisse aus dem bundesweiten Gesundheitsmonitoringsystem des Robert Koch-Instituts. UMID 2016; 2: 18-29 https://www.umweltbundesamt.de/sites/default/files/medien/360/publikationen/umid_02_2016_wohnen_rki.pdf (Stand: 06.03.2023)
  • 784 Gesundheitsamt Bremen, Abteilung Gesundheit und Umwelt, Hrsg. Feuchtigkeit und Schimmel in Wohnungen – Praxisbericht 2012. Bremen: Freie Hansestadt Bremen; 2012. http://www.bremer-netzwerk-schimmelberatung.de/materialien-broschueren.html (Stand: 06.03.2023)
  • 785 Robert Koch-Institut. KiGGS: Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland, 2011. http://www.rki.de/DE/Content/Gesundheitsmonitoring/Studien/Kiggs/kiggs_node.html (Stand: 06.03.2023)
  • 786 Dewitz A, Valtanen K. 3.4 Inequalities in dampness in the home. In: WHO Regional Office for Europe, Hrsg. Environmental health inequalities in Europe. Second assessment report. Copenhagen: WHO Regional Office for Europe; 2019. https://www.who.int/europe/publications/i/item/9789289054157 (Stand: 06.03.2023)
  • 787 Marschewski W. Hrsg. Umweltgerechtigkeit, Public Health und soziale Stadt. Kulmbach: mg Fachverlag; 2001
  • 788 Netzwerk Schimmelpilzberatung Deutschland. Statement des Netzwerkes Schimmelpilzberatung Deutschland. Schimmel im Innenraum – Gesundheitliche Risiken in Zusammenhang mit Armutsgefährdung. Umweltmed – Hygiene – Arbeitsmed 2022; 27: 249-252
  • 789 Statistisches Bundesamt (destatis). Wohnen. Wohnkosten: Knapp 13 % der Bevölkerung fühlen sich belastet, 2023. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Wohnen/eu-silc-armut.html (Stand: 06.03.2023)
  • 790 Statistisches Bundesamt (destatis). Presse. Armutsgefährdung in Bremen, Hessen und Nordrhein-Westfalen von 2009 bis 2019 am stärksten gestiegen, 2020. https://www.destatis.de/DE/Presse/Pressemitteilungen/2020/08/PD20_308_634.html (Stand: 06.03.2023)
  • 791 Statistisches Bundesamt (destatis). Bauen und Wohnen. Mikrozensus – Zusatzerhebung 2010. Bestand und Struktur der Wohneinheiten Wohnsituation der Haushalte, 2012. https://sozialberatungkiel.files.wordpress.com/2012/11/stabu-wohnsituation-haushalte-2010-mz-zusatz-fs5-h1.pdf (Stand: 06.03.2023)
  • 792 Statistisches Bundesamt (destatis). Presse. 2 Millionen Menschen in Deutschland konnten 2019 aus Geldmangel ihre Wohnung nicht angemessen heizen, 2021. https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/02/PD21_066_639.html (Stand: 06.03.2023)
  • 793 Cornely OA, Böhme A. et al. Primary prophylaxis of invasive fungal Infections in patients with hematologic malignancies. Recommendations of the Infectious Diseases Working Party of the German Society for Haematology and Oncology. Haematologica 2009; 94: 113-122
  • 794 Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Böhme A. et al. Treatment of invasive fungal infections in cancer patients – Recommendations of the Infectious Diseases Working Party (Agiho) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 2009; 88: 97-110
  • 795 Rocchi S, Reboux G. et al. Evaluation of invasive aspergillosis risk of immunocompromised patients alternatively hospitalized in hematology intensive care unit and at home. Indoor Air 2014; 24: 652-661
  • 796 Rao D, Phipatanakul W. Impact of environmental controls on childhood asthma. Curr Allergy Asthma Rep 2011; 11: 414-420
  • 797 Verbraucherzentrale, Hrsg. Feuchtigkeit und Schimmelbildung – Erkennen, beseitigen, vorbeugen. Verfasser: Donadio S, Gabrio T, Kussauer K, Lerch P, Wiesmüller GA. 2. Auflage. 2023. ISBN: 9783863360603
  • 798 VDI 4300 Blatt 8: Messen von Innenraumluftverunreinigungen – Probenahme von Hausstaub (VDI 4300 Blatt 8:2001-06). Berlin: Beuth Verlag GmbH; 2001. [zurückgezogen]